Jetson Nano setup
Installationβ
- Prepare SD card
- Download SD card image - https://developer.nvidia.com/jetson-nano-sd-card-image
- Connect SD card to Mac, Use https://www.balena.io/etcher to burn image onto SD card
- Insert SD card
- Run device
- Connect wifi antennas
- Connect camera cables
- Connect Power, Reset and LED cables in correct pins if you use a case
- Set pin near the output barrel - this tells device to use 5V power supply
- Use HDMI output - Display port does not work by default on boot
- After OS installation is complete, you wonβt have wifi right away - you need a restart
Global updateβ
sudo apt-get -y update
sudo apt-get upgrade
# Uninstall LibreOffice to save space
sudo apt remove --purge libreoffice* -y
sudo apt-get clean -y
sudo apt autoremove -y
sudo apt-get update
# Install curl
sudo apt install curl
# Docker upgrade, use own username
sudo usermod -aG docker gratheon
sudo apt-get --only-upgrade install docker.io
# Add docker-compose
export DOCKER_COMPOSE_VERSION=1.27.4
sudo apt-get install libhdf5-dev
sudo apt-get install libssl-dev
sudo pip3 install docker-compose=="${DOCKER_COMPOSE_VERSION}"
# to not display terminal errors when playing annoying sounds
sudo apt install libcanberra-gtk-module libcanberra-gtk3-module -y
# video cam utils
sudo apt-get install v4l-utils
How to install ML software with GPU accelerationβ
Pythonβ
sudo apt install python3-pip
pip3 install --upgrade pip
Opencv with cudaβ
Install cuDNNβ
https://developer.nvidia.com/cudnn-downloads
Install jtop to see GPU usage in realtime
# update pip as root
sudo curl <https://bootstrap.pypa.io/get-pip.py> -o get-pip.py
sudo python get-pip.py
sudo python -m pip install jetson-stats
# restart needed
jtop
nvidia-smi
Install Pytorch with CUDAβ
see https://developer.download.nvidia.com/compute/redist/jp/v60dp/pytorch/
pip install --no-cache <https://developer.download.nvidia.com/compute/redist/jp/v60dp/pytorch/torch-2.2.0a0+81ea7a4.nv24.01-cp310-cp310-linux_aarch64.whl>
# pip install torchvision
See https://github.com/dusty-nv/jetson-containers/tree/master/packages/l4t/l4t-pytorch