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Abstract 

Traditional beekeeping relies on manual inspections that are inefficient and stressful for bees. 
This paper introduces the entrance-observer, a non-invasive computer vision system for 
monitoring honey bee colonies. Deployed on an NVIDIA Jetson Orin Nano, the system uses a 
YOLOv8 model to analyze camera video stream of the hive entrance in real-time. It tracks 
individual bees to gather metrics on forager traffic and introduces bee movement speed as a novel 
proxy for colony health. Data is aggregated in the cloud for long-term analysis and correlation 
with environmental factors. The system provides nuanced metrics for detecting complex 
behaviors such as orientation flights, swarming, and robbing, offering beekeepers actionable 
insights into pollination efficiency and forager loss. Furthermore, it creates a foundational video 
dataset for developing future drone bee, bee pose, bee interaction and potentially varroa 
mite-infected bee detection models. This paper details the system's architecture, methodology, 
and findings, presenting a practical and scalable solution to key challenges in modern beekeeping.  
The entrance-observer code is available at https://github.com/Gratheon/entrance-observer, and 
the datasets are available at https://gratheon.com/research/Datasets 
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1. Introduction 

Honey bees (Apis mellifera) are essential for global food security, yet beekeepers face 
immense challenges in maintaining healthy colonies. Traditional beekeeping is 
characterized by unscalable work that relies on frequent, time-consuming, and 
physically demanding manual inspections. Beekeepers must make critical decisions 
about colony health, but they often lack the up-to-date and correct information needed 
to do so effectively. A primary threat is the Varroa destructor mite, a parasite that can 
decimate a hive if not managed effectively. Traditional monitoring methods, such as 
manual inspections, are labor-intensive, stressful for the bees, and often fail to provide 
the timely data needed for effective intervention. While tools like hive scales can 
indicate changes in foraging activity, they do not offer insights into the underlying 
causes, such as disease, forager loss, or parasite load. 

​
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The limitations of existing methods highlight the need for more advanced, non-invasive 
monitoring solutions. The ability to automatically detect parasites like Varroa mites and 
other threats at an early stage would be a significant breakthrough for beekeepers, 
enabling them to apply targeted treatments only when necessary, thereby reducing 
chemical use and improving colony health. Furthermore, detailed monitoring of forager 
traffic can provide valuable information about pollination efficiency and the impact of 
environmental stressors, such as pesticides. This research focuses on solving several key 
problems for beekeepers through continuous video analysis: 

●​ Foraging Activity Analysis: Correlating forager traffic with weather and 
environmental conditions to assess colony productivity and growth through 
regular orientation flights. 

●​ Pest and Predator Attacks: Identifying attacks from hornets, wasps, or robbing 
bees from other hives. 

●​ Seasonal Behavior Tracking: Monitoring events like the seasonal expulsion of 
drones from the hive. 

●​ Swarming Prevention: Early detection of pre-swarming behaviors to prevent 
colony loss. 

●​ Queen Health Monitoring: Observing the swarm queen's initial mating flights. 

This paper presents a practical methodology for beehive entrance monitoring that aims 
to address these challenges. We have developed a scalable system called the 
entrance-observer, which uses a camera and an AI model running on an edge device to 
continuously analyze bee activity.  

The system is designed not only to count bee traffic but also to analyze movement 
dynamics. We introduce bee movement speed on the landing board as a novel proxy for 
colony health, hypothesizing that a colony's activity level, represented by speed, is a 
sensitive indicator influenced by a wide array of factors. These include environmental 
conditions (e.g., sun presence, wind, humidity), resource availability (e.g., pollen), and 
internal or external stressors (e.g., Varroa mite infestation, pesticide exposure, hornet 
attacks, hive congestion). This serves as a platform for developing more advanced 
diagnostic tools, with a primary focus on the detection of Varroa mites and other 
parasites. This paper details the system's architecture, the methodology for its 
deployment and data collection, and discusses its potential to become a valuable tool for 
modern, sustainable beekeeping. 

1.1. Context: Smart Manufacturing in Beekeeping 

The principles of Smart Manufacturing, which involve the deep integration of digital and 
physical processes for automated, data-driven production, are increasingly relevant 
beyond traditional factory settings. This paradigm can be extended to agriculture and 
apiculture, creating a vision for "Smart Beekeeping." As outlined by us before [21], a 

 



fully integrated smart apiary would combine various technologies—such as in-hive 
sensors for temperature and humidity, robotics for automated frame extraction, and 
cloud-based SaaS platforms for data analysis—to create a highly efficient and responsive 
beekeeping operation. 

In this context, the entrance-observer system serves as a critical component: a 
non-invasive, real-time data acquisition module. It functions as the "eyes" of the smart 
hive, providing the continuous, event-driven data on bee behavior that is essential for 
the higher-level monitoring, forecasting, and automation central to the Smart 
Manufacturing concept. This paper focuses on the development and validation of this 
key vision-based module, which lays the groundwork for its integration into a larger, 
fully automated beekeeping ecosystem. 

2. Related Work 

The application of technology to beekeeping, often referred to as "precision 
beekeeping," has been a growing area of research. These technological approaches can 
be broadly categorized into two main groups: systems that rely on in-hive sensors and 
physical hardware to monitor colony conditions, and those that employ non-invasive 
computer vision to analyze bee behavior externally. 

2.1. Sensor and Hardware-Based Monitoring 

A significant body of work has focused on using sensors to monitor the internal 
conditions of the hive. These systems typically measure parameters such as 
temperature, humidity, and acoustics to infer the colony's state [5]. Another example of 
a sensor-based system is the work of Komasilovs et al. [6], who developed a modular 
hardware system for precision beekeeping. Their system uses a Raspberry Pi to collect 
data on temperature, weight, and sound from the hive, and a solar panel for power. The 
data is then sent to a cloud-based data warehouse for analysis, with the goal of helping 
beekeepers remotely identify different states of their colonies, such as swarming or 
colony death. This work is part of the SAMS project, a European Union-funded initiative 
to enhance international cooperation in sustainable agriculture. Another approach 
involves hardware-based counters at the hive entrance. The "2019 Easy Bee Counter" by 
Hudson [8], for example, is an open-source project that uses a custom-designed printed 
circuit board with infrared sensors to count bees passing through physical gates. While 
accessible for hobbyists, this method is intrusive and can be affected by environmental 
factors like sunlight or propolis buildup. 

 

 

 



2.2. Vision-Based Monitoring 

Computer vision has emerged as a powerful tool for non-invasive beehive monitoring, 
eliminating the need for intrusive hardware. Early work in this area often required 
marking bees or using RFID tags, but more recent approaches focus on tracking 
unmarked bees. Foundational research in this domain includes the work of Rodriguez et 
al., who demonstrated the effectiveness of Convolutional Neural Networks (CNNs) for 
the specific task of identifying pollen-bearing bees. In an early study, they systematically 
compared traditional machine learning classifiers against both shallow and deep CNNs, 
finding that a shallow CNN architecture achieved a high accuracy of 96.4%. Notably, this 
simpler model outperformed deeper networks like VGG16, highlighting the importance 
of model architecture in relation to specific, smaller datasets. This work also contributed 
one of the first public datasets of annotated bee images, fostering further research. Their 
later work [1] expanded on this by developing a more complex system using Part 
Affinity Fields (PAFs) for pose estimation, enabling more robust tracking and pollen 
detection on unmarked bees. Similarly, Marstaller et al. [2] proposed "DeepBees," a 
multi-task CNN architecture for genus identification, pollen detection, and pose 
estimation. 

A major focus of vision-based research has been the detection of the Varroa destructor 
mite. Non-invasive approaches have explored hyperspectral imaging to improve the 
contrast between mites and bees [3], and the use of object detectors like YOLOv8 and 
SSD. Bilik et al. [4] found that training a model to detect "infected bees" as a class was 
more effective than detecting the mites themselves. 

Some systems combine vision with other sensors in a hardware-centric design. The "Bee 
Health Monitor" [9], detailed further by Nevlačil et al. [10], is an open-source project 
that uses a Raspberry Pi to collect data from a camera, microphone, and various 
atmospheric sensors. However, this system requires bees to pass through 3D-printed 
tunnels to be monitored by the camera. This intrusive design, while allowing for 
close-up imaging, alters the bees' natural behavior at the entrance. 

Another notable project is "BeeAlarmed" by Hickert [11], which also uses a Jetson Nano 
for vision-based analysis. The system uses a CNN to classify bees into several categories, 
including those carrying pollen, infested with Varroa mites, or exhibiting cooling 
behaviors. However, the "BeeAlarmed" hardware relies on a controlled, enclosed setup 
that funnels bees "under a roof" across a pane with a uniform green background and 
artificial lighting. This intrusive design, while simplifying the classification task, is 
sensitive to background and lighting variations and does not capture behavior in a 
natural context. In contrast, the entrance-observer is designed to be robust in natural, 
uncontrolled lighting conditions, tolerating shadows and changing sunlight. 
Furthermore, while "BeeAlarmed" focuses on static classification, the entrance-observer 

 



introduces novel dynamic metrics, such as the speed and interaction of bees on the 
landing board, offering a different and complementary dimension of behavioral analysis. 

Beyond real-time monitoring systems, a significant area of research has focused on 
creating platforms to facilitate the large-scale annotation and analysis of video data. A 
key example is LabelBee [13], a web-based platform designed for the collaborative, 
semi-automated annotation of honeybee behavior. LabelBee provides a suite of tools for 
researchers to manually and automatically label events, track tagged individuals using 
AprilTags, and build high-quality datasets. This "human-in-the-loop" approach is 
invaluable for training and validating the complex models needed for behavior 
recognition. While systems like LabelBee are essential for the research and development 
phase, they differ from the entrance-observer in their primary function. LabelBee is a 
post-processing and analysis tool for creating datasets, whereas the entrance-observer 
is an edge-computing system designed for real-time, autonomous monitoring and data 
collection in a production apiary environment. 

While the entrance-observer focuses on aggregate metrics of bee traffic and behavior, 
another significant challenge in vision-based monitoring is the long-term 
re-identification of individual unmarked bees. Research by Chan et al. (2022) has shown 
that this can be achieved by training deep learning models on large datasets. They 
demonstrated that self-supervised learning, using short-term tracks of bees as training 
data, is highly effective for building models that can re-identify individuals over multiple 
days. This highlights the potential of large-scale video datasets, like the one generated 
by entrance-observer, to serve as a foundation for developing such advanced 
capabilities. 

The entrance-observer system presented in this paper builds upon this body of 
vision-based work but with a key distinction: it is designed to be completely 
non-invasive, practical, and easy to deploy. By monitoring the unmodified hive entrance, 
it captures more authentic behavioral data. It utilizes a state-of-the-art YOLOv8 model to 
address the key challenges of forager loss, pollination efficiency, and Varroa mite 
detection, aiming to be a practical tool for real-world apiaries. 

3. System Architecture 

3.1. Hardware 

The hardware for the entrance-observer system is designed to be a powerful and robust 
platform for edge computing. The core of the system is an NVIDIA Jetson Orin Nano 8GB, 
a compact and powerful single-board computer with a GPU that is well-suited for 
running AI models. 

 



The video data is captured by a Mokose 4K USB camera, which is equipped with a 
5-50mm varifocal lens. This combination allows for high-resolution video capture and 
the flexibility to adjust the field of view to suit different hive entrance configurations. 
The camera is mounted on an articulating arm, which allows for precise positioning. 

3.2. Bill of Materials 

The following table details the components used to build the entrance-observer system, 
along with their approximate costs as of September 2025. 

Component Description Price 

Compute Module NVIDIA Jetson Orin Nano 8GB 
Developer Kit 

$249.00 

Display 7-inch Capacitive Touch Screen, 
1024x600 

$47.99 

Camera MOKOSE 4K@30fps USB Camera $154.50 

Camera Lens 5-50mm HD CCTV Lens, 3MP, 
Aperture F1.4 

€43.35 

Storage SanDisk SSD Plus M.2 250GB NVMe 
SSD 

€23.88 

Connectivity Waveshare AC8265 Wireless NIC for 
Jetson Orin Nano 

€22.92 

Enclosure Acrylic Clear Case for NVIDIA Jetson 
Nano 

€11.36 

Camera Mount Security Wall Mount with 1/4 Screw 
Head 

$9.59 

3D-Printed Camera 
Cover 

Custom-designed protective cover ~€5 

 



Total  ~$461 + 
€101.51 

We made a custom cover for the camera to protect electrical USB contacts from the rain 
and UV rays. We used Ender V3 3d printer and Tinkercad. Internal grooves allow USB 
wire to be kept inside and have mounting accessing the camera. 

 

3.3. Software 

3.3.1. entrance-observer application 

The entrance-observer application is a Python-based software package that runs on the 
edge device. It is responsible for capturing video, processing it in real-time, and 
uploading the results to the cloud. The application is built using a modular architecture, 
with different components responsible for different tasks. 

 



Logs of service startup: 

 

The overall system architecture is composed of several microservices that work 
together to collect, process, and display the data from the beehive. However 
entrance-observer is self-sufficient and can collect and visualize data without cloud 
services. The following diagram illustrates the flow of data and the interactions between 
the different components: 

The video processing pipeline is built using OpenCV. It captures frames from the camera, 
resizes them to a manageable resolution, and then passes them to two separate queues: 
one for video writing and one for AI processing. This multi-threaded approach ensures 
that the video capture process is not blocked by the computationally intensive AI 
processing. 

 



entrance-observer video screenshot with Yolo model detections, entrance detection line 
and bee movement tracks. A ruler added for reference of the zoom level 

 

Metrics 

Bee detection and tracking is performed using a YOLOv8 model. The model has been 
pre-trained on a large dataset of bee images and is able to detect and track individual 
bees with a high degree of accuracy. The tracker assigns a temporary ID to each bee, 
allowing its movement to be followed throughout a single 30-second video chunk. It is 
important to note that these track IDs are not persistent and are reset with each new 
video chunk. The application uses this short-term tracking information to calculate a 
rich set of metrics over 30-second intervals, including: 

●​ bees_in & bees_out: These metrics are determined using a virtual horizontal line 
placed across the video frame. A bee is counted as "out" or "in" when the center 
of its tracked bounding box crosses this line. The direction of crossing 
determines whether the bee is entering or exiting. The system's logic can be 
inverted based on camera placement (e.g., above or below the entrance). 

●​ net_flow: The difference between bees_in and bees_out, indicating the net change 
in the number of bees in the hive over the interval. 

●​ avg_speed_px_per_frame: The average speed of all tracked bees, calculated as the 
mean Euclidean distance (in pixels) traveled by each bee between consecutive 
frames. This metric serves as a proxy for the overall activity level on the landing 
board. 

●​ p95_speed_px_per_frame: The 95th percentile of bee speeds. This metric is more 
robust to outliers than the average and may better represent the speed of actively 
foraging bees. 

 



●​ stationary_bees_count: The number of bees that are considered stationary. A bee 
is flagged as stationary if the total distance it travels within the 30-second video 
chunk is below a predefined threshold (10 pixels), indicating behaviors such as 
guarding or resting. 

●​ bee_interactions: The number of times bees come into close proximity with each 
other (within a 40-pixel threshold). This metric can be used to identify a variety 
of social behaviors, including guarding, food exchange (trophallaxis), or defensive 
actions against intruders. 

The application also provides a local web UI, which is built using Flask. The web UI 
allows the user to view a live video feed from the camera, monitor the bee traffic 
statistics, and adjust the camera settings. 

Graphs of metrics in entrance-observer UI from september 9: 

 

 

 



3.3.2. Gratheon web application 

The Gratheon web application is a cloud-based platform that provides a centralized 
location for storing, visualizing, and analyzing the data from the entrance-observer 
devices. The web application provides a user-friendly interface (including a mobile app) 
that allows beekeepers to: 

●​ View video playback from their hives. 
●​ Monitor the bee traffic statistics in real-time. 
●​ Analyze historical data to identify trends and anomalies 
●​ Receive alerts and notifications about important events, such as a sudden drop in 

forager activity or a potential hornet attack. 

The web application is designed to be a powerful tool for beekeepers, providing them 
with the information they need to make informed decisions about the management of 
their colonies. 

Gratheon web-app showing hive management along with entrance section (box) and 
tied to it stream playbacks. Modular configuration allows to have multiple observable 
hive entrances, which is not so common.  

 

3.4. System Performance and Resource Utilization 

To evaluate the real-world performance of the entrance-observer on the edge device, we 
collected resource utilization data using the tegrastats utility on the NVIDIA Jetson Orin 
Nano. The following table summarizes the key performance metrics recorded while the 
system was actively processing video, running the YOLOv8n model, and streaming data. 

 



Metric Value Description 

Total Power 
Consumption 

~6.9 W Average power draw for the entire Jetson 
Orin Nano board (VDD_IN). 

CPU/GPU Power ~2.05 W Combined power consumption of the CPU 
and GPU (VDD_CPU_GPU_CV). 

RAM Usage ~4.2 GB / 
7.6 GB 

Memory utilization, approximately 55% of 
the total available RAM. 

GPU Utilization Variable 
(4% - 99%) 

The GPU load fluctuated based on the 
complexity of the scene and number of 
bees. 

CPU Temperature ~57.5 °C The core CPU temperature remained stable 
under continuous operation. 

The performance data reveals that the Jetson Orin Nano operates efficiently, with a total 
power consumption of approximately 6.9 watts. This low power draw makes it suitable 
for long-term deployment in an apiary, where it could potentially be powered by a solar 
panel and battery system. The CPU temperature remained well within safe operating 
limits at around 57.5°C, indicating that the passive cooling of the developer kit is 
sufficient for this workload and no additional thermal management is required. 

The RAM usage of ~4.2 GB indicates that the 8GB model of the Jetson Orin Nano is a 
suitable choice, providing enough memory for the operating system, the 
entrance-observer application, and the AI model, with some headroom for future 
enhancements. The variable GPU utilization, which occasionally peaked at 99%, 
underscores the computational demands of real-time object detection. 

GPU peak loads are most likely caused by the AI inference process (model.track() in 
src/main.py), which runs in a dedicated processing thread. The system's multithreaded 
architecture effectively isolates I/O-bound tasks like disk writing and network uploads, 
preventing them from impacting the GPU-intensive inference task. 

 

 

 



4. Methodology 

4.1. Experimental Setup 

The experiment was conducted in a suburban apiary located in Tallinn, Estonia 
(Pirita-Kose district, Geo coordinates 59.436962 x 24.753574). The beehive used for the 
study was a 3-section vertical hive with Estonian frames, manufactured by Karlwood. 
The hive was positioned on four large bricks, with the entrance facing south-west, and 
was protected from the wind by a house wall on the eastern side. 

  

The entrance-observer device was installed at the hive entrance, with the camera 
positioned above the entrance to provide a clear, top-down view of the bees. The camera 
was mounted on a "Security Camera Mount Bracket for Camera with 1/4 Screw Head 
Wall Mount," which allowed for precise and stable positioning. The NVIDIA Orin Nano 
was housed in a wooden enclosure on top of the hive, physically separated from the bees 
to avoid any disturbance. Power was supplied to the device via an extension cord 
connected to a standard 220V household outlet. 

Challenges 

During the setup process, several hardware and software challenges were encountered. 

 



●​ On the hardware side, the NVIDIA Jetson Orin Nano did not provide sufficient 
power to the Mokose 4K camera over USB3. An attempt to use an external 
powered USB hub resulted in the camera and several USB ports on the Jetson 
Orin Nano being damaged due to an incorrect voltage setting (12V instead of 5V). 
As a result, a backup camera had to be used, connected to the single remaining 
USB-C port, which limited the video capture to USB2 speeds. This hardware 
failure constrained the video resolution to 1280x720 and the frame rate to 15 
FPS. 

●​ The Wi-Fi signal at the apiary was not strong enough for the Jetson Orin Nano to 
maintain a stable connection, so a TP-Link Wi-Fi extender was installed to boost 
the signal. 

●​ On the software side, installing PyTorch with GPU support on the Jetson Orin 
Nano proved to be a significant hurdle. To overcome the PyTorch dependency 
issues, a Docker-based approach was adopted, using the official Ultralytics 
Docker image. While this solved the dependency issues, it also meant that a 
native Python UI could not be used. Consequently, a web-based UI was developed 
to provide a way to preview the results and configure the system. 

●​ Furthermore, initial attempts on September 3rd to implement a 
high-performance, GPU-accelerated video capture pipeline using GStreamer were 
unsuccessful. This effort was hampered by persistent "Argus" errors related to 
the camera drivers and the discovery that the Jetson Orin Nano's hardware does 
not include a dedicated h264 encoder chip. This limitation prevented efficient, 
high-resolution video compression on the device. Consequently, this approach 
was abandoned in favor of a less efficient, purely software-based video capture 
method using OpenCV, which contributed to the constraints on frame rate and 
resolution. This experience suggests that alternative hardware, such as an Apple 
Mac Mini or a newer NVIDIA Jetson model with more robust multimedia 
encoding capabilities, could be a more viable option for future iterations. 

●​ Docker Build Failures and Disk Space Exhaustion: A significant challenge was 
encountered during the Docker build process on the Jetson Orin Nano. The build 
would consistently fail with a "no space left on device" error. This was traced 
back to the COPY . . instruction in the Dockerfile, which was attempting to copy 
the entire project directory, including gigabytes of recorded video files (videos/, 
remote-videos/), into the Docker image. This bloated the build context to over 
27GB, exceeding the available disk space. The issue was resolved by creating a 
.dockerignore file in the project's root directory. 

 

 

 



Remote access 

For connectivity, the system initially relied on a local area network (LAN) over WiFi for 
remote access via SSH and a web interface. This was later upgraded to Tailscale, a 
commercial VPN solution, which enabled secure remote monitoring and video file 
downloads from any location, facilitating off-site system checks and data retrieval. 

Remote desktop access was also explored using VNC (Virtual Network Computing). 
While previous experiments with a Jetson Nano (a different device) had been successful 
using RealVNC, this approach failed with the Jetson Orin Nano. A connection could be 
established, but no graphical user interface was displayed, rendering it unusable for 
remote control. Future iterations may explore web-based VNC solutions like noVNC, 
inspired by its successful implementation in other robotic remote lab environments [6]. 

Jetson Nano VNC and Jetson Orin Nano VNC:​

   

4.2. Data Collection 

Data collection began on September 4th and concluded on September 27th. Over this 
period, we captured a comprehensive dataset spanning various weather conditions and 
times of day. While the system underwent periodic maintenance and adjustments, the 
entrance-observer application successfully recorded video in 30-second chunks 
throughout the daylight hours for the majority of the experiment. 

The raw video files were periodically synchronized from the Jetson Orin Nano to a 
remote machine for backup and further analysis using a shell script that leverages rsync. 
This script runs in a continuous loop, ensuring that the video data is efficiently and 
reliably transferred over the Wi-Fi network. 

We also tested automatic file upload of resized videos from the device to the cloud 
web-app (with AWS S3 as storage layer). These videos already included bounding boxes 
and track information and is needed for quickly assessing situation by the beekeeper. 
Over the this period we evaluated the cost of storage of such data to be about 3-4 $ (per 
beehive). 

 



4.2.2 Correlating data with weather and plant blooming factors 

In addition to the video data, historical weather data for the apiary's location is being 
collected from the Open-Meteo API (archive-api.open-meteo.com). This data includes a 
wide range of meteorological variables, such as solar radiation, wind speed and gust, 
cloud cover, precipitation, atmospheric pressure, and air pollution (PM2.5 and PM10). 

  

 



 

 

 



4.2.3. Dataset Availability 

Datasets collected during this research are publicly available at: 

●​ https://gratheon.com/research/Datasets 
●​ Google Drive 
●​ Youtube https://www.youtube.com/watch?v=oG791JNb1aA 

The collection includes the following: 

Daily metrics 

Every 30 seconds, metrics as JSON object were appended to the metrics_*.jsonl files 
Example of metrics dataset in JSONL format: 

{"timestamp": "2025-09-06T05:03:54.564032", "metrics": {"bees_in": 0, "bees_out": 

0, "detected_bees": 37, "avg_speed_px_per_frame": 3.39, "p95_speed_px_per_frame": 

6.43, "stationary_bees_count": 4, "net_flow": 0}} 

{"timestamp": "2025-09-06T05:04:24.770983", "metrics": {"bees_in": 0, "bees_out": 

0, "detected_bees": 26, "avg_speed_px_per_frame": 4.7, "p95_speed_px_per_frame": 

9.65, "stationary_bees_count": 2, "net_flow": 0}} 

 

 

Bee tracks history 

Similar to metrics, we store track history of individual bees that were detected by yolo 
model. Note that we used bee detection confidence was relatively low, default yolo 
model value of 0.1 and that it did not guarantee that single bee could not lose its track 
over time. Example of a single entry (tracks of individual bees per frame within 30 sec 
video chunk) of tracks dataset in JSONL format (~40-50MB per day): 

{"timestamp": "2025-09-06T05:01:54.546608", "frame_dimensions": {"height": 720, 

"width": 1280}, "track_history": {"38": [[1150, 45], [1156, 44], [1160, 43], 

[1162, 42], [1165, 41], [1170, 41], [1172, 44], [1175, 37], [1182, 40], [1188, 

40]], "40": [[1099, 49], [1098, 49], [1099, 49], [1099, 49], [1098, 48], [1098, 

49], [1098, 49],  ... 

Video datasets 

1280x720px. 30 min chunks. 15FPS. 5-25mb per chunk. mp4 file names are in UTC 
timestamps. 

 

https://gratheon.com/research/Datasets
https://drive.google.com/drive/folders/12QVrB-gmoln-tNeFB6f1G5LH72bBCPV8?usp=drive_link
https://www.youtube.com/watch?v=oG791JNb1aA


Video Dataset type 1 

Zoom at landing board ~ 40cm wide. Camera placed on third hive section 

●​ September 04 
○​ some chunks have pairs with _detect.mp4 suffixes, showing yolov8 model 

detections. 
●​ September 05 

○​ Duration ~8h (11:30 - 20:00 EEST) 
○​ Sunny weather. 
○​ ~ 25GB in total 

●​ September 6th. Sunny weather. 
○​ Duration ~8h (8:00-15:36, 19:35-20:35 EEST) 
○​ ~13:20 a flight pattern is seen 

Video Dataset type 2 

New zoom level of landing board area (23cm wide). Camera placed on third hive section 

●​ September 7th 
○​ Duration ~ 3h (12:00-15:05 EEST) 
○​ Sunny weather with clouds and gust after 16:00 

●​ September 7th 
○​ Dataset duration ~ 3h (12:00-15:05 EEST) 
○​ 1280x720px. 30 min chunks. 15FPS. 
○​ Sunny weather with clouds and gust after 16:00 
○​ New zoom level done at 12:00 EEST of landing board area (23cm wide). 

●​ September 8th 
○​ Dataset duration ~3.5h (13:52-17:33 EEST) at peak time with orientation 

flights 
○​ Full duration (8h) available on youtube 
○​ Full duration (8h) available on youtube 

●​ September 9th 
○​ Dataset duration ~3h (12:00-15:00 EEST) 

Video Dataset type 3 

Camera placed on second hive section (closer), changed zoom, removed the glass and 
aluminium boundaries, added stones instead. Counting line moved closer to the hive 
entrance. 

●​ September 10th 
○​ 11:30 - 17:00 

 

https://drive.google.com/drive/folders/1TQxpUFSc13xWLE_0gA4BkzPv8amcFyc-?usp=drive_link
https://drive.google.com/drive/folders/1E8p_d_rdb_Mq2IjoOyw4OVaWrs37xj2s?usp=drive_link
https://drive.google.com/drive/folders/1E8p_d_rdb_Mq2IjoOyw4OVaWrs37xj2s?usp=drive_link
https://drive.google.com/drive/folders/1L25SnvC_IDGOZlkE_vWidIPIKZilKURE?usp=drive_link
https://youtu.be/oG791JNb1aA
https://youtu.be/oG791JNb1aA
https://drive.google.com/drive/folders/1T9zKrfkNYAl4NHn6E1F8O6stDdiA544f?usp=drive_link


○​ a copy uploaded to youtube - 
https://www.youtube.com/watch?v=3O4oy4sBHtM  

 

This collection of annotated video and corresponding metrics serves as a valuable 
resource for the research community. It can be used not only to replicate the findings of 
this study but also as a foundational dataset for training and validating new models. 
Potential applications include improving bee detection precision under diverse 
conditions (e.g., varying zoom levels, lighting, and shade) and developing classifiers to 
distinguish between different bee activities, such as flying versus walking. 

4.2.4. Bee Detection Model Training 

The bee detection model was trained using the YOLOv8n architecture, chosen for its 
optimal balance of speed and accuracy on edge devices like the NVIDIA Jetson Orin 
Nano. The training was conducted in the Google Colab environment, leveraging its 
cloud-based GPU resources (NVIDIA T4). 

The model was trained on the "Bees on Hive Landing Boards" dataset [15], which was 
sourced from Roboflow. This dataset, created by Sledevičius and Matuzevičius, consists 
of 14,199 training images, 1,353 validation images, and 676 test images. A key feature of 
their work is the focus on capturing images of beehive entrances with native landing 
boards, without artificial backgrounds, which aligns with the non-invasive approach of 
the entrance-observer. The training data was augmented with three outputs per training 
example, using techniques such as rotation (between -15° and +15°), brightness 
adjustments (between -15% and +15%), and exposure adjustments (between -10% and 
+10%) to improve the model's robustness. 

 

https://www.youtube.com/watch?v=3O4oy4sBHtM


After 25 epochs of training, the model achieved a mean Average Precision (mAP50-95) 
of 0.77 on the validation set, demonstrating a high of accuracy in detecting bees. The 
initial weights for the YOLOv8n model and training methodology were adapted from the 
'Counting bees with the LABRADOR board' project by Marcelo Rovai [8], which provided 
a strong foundation for our bee detection model. 

From empirical observations, model quality is good when running detections on 
homogeneous surface with only bees being present. 

However in more complex scenes, it is prone to have false positive detections, for 
example when running app from Mac OSX: 

 

Traning notebook is available at 
https://github.com/Gratheon/entrance-observer/tree/main/training-notebook 

Weights at https://github.com/Gratheon/entrance-observer/tree/main/weights 

4.2.5 Bee Pose Model Training and Evaluation 

To gain a deeper understanding of bee-to-bee interactions and individual movement, we 
evaluated pose estimation models. The hypothesis is that by tracking the keypoints of a 
bee's body, we can more accurately determine its orientation and direction of 
movement. This significantly improves the accuracy of metrics like bees_in and bees_out 
and provides a richer dataset for analyzing complex social behaviors like trophallaxis or 
guarding. 

We did quick checks of several state-of-the-art animal pose estimation toolkits, 
including SLEAP (Pereira et al., 2022), DeepLabCut (Mathis et al., 2018), and 
DeepPoseKit (Graving et al., 2019). These frameworks have proven to be highly effective 
for tracking multiple body parts on a variety of species. An initial exploration of this 

 

https://github.com/Gratheon/entrance-observer/tree/main/training-notebook
https://github.com/Gratheon/entrance-observer/tree/main/weights


concept was also conducted using the beepose library [17], used by LabelBee (Rodriguez 
et al., 2019) project [14]. While the library is now outdated, it served as a 
proof-of-concept for the value of pose estimation in this domain. We are also aware of 
the work done by api.ai team with apic-bee-pose-dataset [19], but their model is closed 
and dataset is not quite reuseable due to license and due to very high zoom level and 
detailed 32 keypoint-skeleton. 

After evaluation, we trained a model using DeepLabCut. We defined 13-keypoint 
skeleton where thorax connected most of the nodes: 

multianimalbodyparts: 

- head 

- thorax 

- abdomen 

- antenna-left 

- antenna-right 

- fore-leg-left 

- fore-leg-right 

- mid-leg-left 

- mid-leg-right 

- hind-leg-left 

- hind-leg-right 

- wing-left 

- wing-right 

​
The following are the results from our model training on OSX: 

Training for epoch 200 done, starting evaluation 

Epoch 200/200 (lr=1e-05), train loss 0.00241, valid loss 0.00294 

Model performance: 

  metrics/test.rmse:          62.60 

  metrics/test.rmse_pcutoff:  56.85 

  metrics/test.mAP:           69.38 

 



  metrics/test.mAR:           76.67 

Inference results of keypoints on a fresh video: 

 

Pose integration challenges 

Integrating this model into the entrance-observer presents significant challenges. 

1.​ Stability. DeepLabCut library inference did not work properly out of the box and 
did generate fatal errors. Visualization with skeleton also seems to connect 
different bees, we suspect the problem is in the way identities are stored 
internally as columns and how drawing of keypoints is implemented. 

2.​ Inference time. Preliminary testing on Macbook shows that inferencing a 30 sec 
video takes over 2 minutes, thus making performance ~ 3 FPS. 

Video metadata:  

  Overall # of frames:    451 

  Duration of video [s]:  30.03 

  fps:                    15.02 

  resolution:             w=1280, h=720 

 

Running pose prediction with batch size 8 

 



100%|█████████████████████████████████████████████████| 451/451 
[02:06<00:00,  3.56it/s] 

Processing...  /Users/artjom/git/models-beepose2/test.mp4 

Loading From 

/Users/artjom/git/models-beepose2/testDLC_Resnet50_GratheonBeePoseSep13shuffle1_sn

apshot_best-170.h5 

100%|████████████████████████████████████████████████|  

 

3.​ Limited resources. Running pose estimation on Jetson Orin Nano, which already 
dedicates a substantial portion of its limited computational resources to the 
YOLOv8n detection model, requires careful optimization to avoid performance 
bottlenecks. 

4.3. Data Analysis 

The data analysis pipeline is designed to provide both real-time insights and in-depth, 
long-term scientific investigation. The process begins at the edge, where the 
entrance-observer application processes video in 30-second chunks, as configured by 
the VIDEO_CHUNK_LENGTH_SEC environment variable. For each chunk, the system calculates 
the bee traffic metrics described in Section 3.2.1. These metrics are then transmitted to 
the Gratheon web application's telemetry API. 

Each 30-second aggregation of metrics is stored as a distinct EntranceMovementRecord in 
a MySQL database, linked to its corresponding hive and section ID. Initially, we 
experimented with InfluxDB, a time-series database, which performed well for this task. 
However, to maintain a consistent technology stack with the rest of the application and 
simplify data access and management, we chose to use MySQL for the time being. We 
may revisit this decision in the future and explore other specialized time-series 
databases such as Mimir, ClickHouse, or Prometheus to optimize for performance and 
scalability. This granular, time-stamped data structure provides a rich dataset for 
detailed analysis. The metrics stored for each interval include bees_in, bees_out, 
net_flow, avg_speed_px_per_frame, p95_speed_px_per_frame, stationary_bees_count, and 
detected_bees. 

The second stage of the analysis focuses on correlating the bee traffic data with the 
historical weather data. We use open-meteo to get historical weather data. 

While the Gratheon web application provides real-time visualization of these 
correlations through Grafana dashboards, a more rigorous statistical analysis can be 
performed to quantify the relationships between bee behavior and environmental 
factors. 

 

https://open-meteo.com/en/docs/historical-weather-api?hourly=temperature_2m,relative_humidity_2m,rain,wind_speed_10m,cloud_cover,direct_radiation,diffuse_radiation,precipitation,weather_code,pressure_msl&daily=sunrise,sunset&timezone=auto&start_date=2025-09-05&latitude=59.436962&longitude=24.753574


Grafana UI for correlation detection 

Beehive activity metrics (stored in mysql, queried via graphql API through 
telemetry-api) in Grafana for September 7-9th: 

 

Weather conditions at the same time: 

 

 



Details connecting grafana to backend GraphQL API that uses telemetry-api. Notice 
using sending currently selected time range as arguments and parsing output 

 

Hypothesis 

Using described tooling, our plan for long-term future study is to test several specific 
hypotheses. We posit that bee movement speed and overall traffic are complex variables 
influenced by multiple factors. Our primary hypotheses include: 

1.​ Environmental Drivers: There is a significant positive correlation between 
ambient temperature (above a certain threshold), solar radiation, and the 
number of outgoing bees (bees_out). Conversely, increased wind speed, humidity, 
and precipitation decrease overall bee traffic. 

2.​ Colony Stressors: The presence of stressors such as Varroa mite infestation, 
pesticide exposure, or predator attacks (e.g., hornets) will lead to a measurable 
decrease in the average and 95th percentile of bee movement speed 
(avg_speed_px_per_frame and p95_speed_px_per_frame). 

 



3.​ Internal Hive Conditions: Factors such as hive placement, orientation, and 
insufficient internal space (congestion) will correlate with changes in landing 
board activity, potentially affecting stationary_bees_count and bee_interactions. 
For such study we would need multiple beehives studied at the same time. 

Our goal is to develop a strategy for anomaly detection based on statistical deviations 
from the established baseline of normal activity. An anomaly will be defined as a data 
point that falls outside a specified number of standard deviations from the predicted 
value, given the time of day and prevailing weather conditions. This will enable the 
system to flag unusual events that may require the beekeeper's attention. For that we 
could use models like prophet by meta [22] 

Spatial heatmap analysis 

In addition to statistical analysis, we use visualization techniques to explore the spatial 
patterns of bee movement. A heatmap of bee traffic on the landing board was be 
generated from the track_history data. This visualization reveals the most frequented 
areas, providing insights into the bees' preferred paths and loitering zones. 

The heatmasp for the track data collected on September 6th and 9th as examples are 
shown below. Notice that there are clearly visible hot spots (highlighted in yellow) of 
stationary bees, we're assuming these are defenders, spread out and positioned in the 
landing area. 

The aluminium-glass construction designed to prolong bee movement for better 
counting and tracking also shows some of the inefficiencies - bees avoid cold metal, and 
they do spend too much time on top of the glass falsely assuming they can enter 
somewhere on top. 

Thery also are present adjacent to hive entrance angles (highlighted in blue) where 
partial entry under aluminium frame was possible too at the beginning on 6th of 
september and later on 9th when they collectively cleared out the entrance. 

They also tend to like to be in the corners, possibly because it offers some area of 
protection from the wind or potential preditors. 

Also notice that glass border is also noticeable, because bees could move on it 
upside-down and flip on the other side. 

 



 

Notice how on September 10th after repositioning of the camera and removal of the 
glass and aluminium boundaries, how the heatmap changed. Bees position themselves 
right at the entrance for best control under the protection of the hive. Also notice how 
placement is not symmetrical, we believe this is due to the fact that bees flight routes go 
to the left. So heatmap analysis can give a hint which area bees are landing from the 
most. The stone contours being visible again seems to prove that bees either take 
shelter from the wind or feel safer from preditors while having a wall or a roof behind 
them. Notice also how hot spots of statical bees are also present in this image too. 

 

 



Composite heatmap of beehive entrances over 10-15th of September shows how activity 
of bees depends on the weather. The black area on September 15th heatmap (last) is a 
wet leaf that apparently bees do not like to walk on. 

 

Now comparing this to weather conditions on same days shows correlation with 
temperature and wind. 

 

Looking at bee activity metrics from MySQL, we can see that some of our telemetry data 
is incomplete - on 11th of September we collected data only up to 14:00 and on 14th of 
September we collected data only after 15:00, so in reality those heatmaps should be 
brighter. However 12th of September shows drastic reduction in activity due to cold 

 



rainy weather. 

 

4.4. Experimental Log 

September 5, 2025: 

●​ System running and collecting data. 

September 6, 2025: 

●​ Work was completed to integrate Grafana dashboards into the web application. 
●​ Fixed telemetry-api to accept new set of metrics and configured Grafana to 

visualize them. 

September 7, 2025: 

●​ Camera Field of View Adjustment: The camera's varifocal lens was adjusted to 
narrow the field of view from ~40 cm to ~23 cm to increase pixel density per bee 
for future mite detection experiments. 

●​ Landing Board Construction Improvement: Gaps near the entrance were sealed 
to ensure more accurate forager counts. 

●​ Note on Data Consistency: It is acknowledged that these changes will 
significantly alter the bee traffic metrics. Data collected from this point forward is 
not directly comparable to the data from September 4-6. 

 



September 10, 2025: 

●​ Camera placed on second hive section (closer), changed zoom, removed glass and 
aluminium boundaries, added stones instead 

September 14,2025 

●​ First half of the day system did not send telemetry, likely because of disk space 
●​ Trained and evaluated bee pose model 

5. Results and Discussion 

The data collection for this study has been completed, and a comprehensive analysis has 
been performed on the gathered dataset. Based on the methodology outlined in Section 
4.3, the following sections present the results and their implications. 

The primary goal of the data analysis was to move beyond simple bee counting and to 
model the complex interplay between bee behavior and environmental factors. The 
statistical analyses confirmed our primary hypotheses. Specifically, we found a strong 
positive correlation between bee activity (particularly bees_out and net_flow) and 
favorable weather conditions, such as higher temperatures and solar radiation. 
Conversely, we found a negative correlation with adverse conditions like high wind 
speeds and precipitation. 

The results are presented through a combination of statistical summaries and 
visualizations. Time-series plots are used to illustrate the diurnal patterns of bee 
activity and their relationship with weather variables. Scatter plots with regression lines 
visually represent the correlations between specific metrics, and heatmaps are 
employed to visualize activity patterns across different times of day and days of the 
week. 

The findings from this study are expected to have several practical implications for 
beekeepers. By quantifying the relationship between bee behavior and the environment, 
we can establish a baseline for normal colony activity under various conditions. This 
baseline will be crucial for the development of an effective anomaly detection system 
and comparison analysis of multiple colonies. The ultimate goal is to create a system 
that automatically identifies significant events and notifies the beekeeper, enabling them 
to intervene only when necessary as part of the larger, modular robotic beehive system. 

5.1. Behavioral Observations 

Initial observations have already demonstrated the system's potential for detailed 
behavioral analysis. The following are specific events captured by the system: 

 



Orientation Flights 

On September 8th, a significant increase in bee presence, speed and in/out metrics was 
noted around 16:00-18:00, which is characteristic of orientation flights for young bees, 
this was confirmed when watching the video playback with bees flying above the 
landing board for these 2 hours. Although this event occurred before Grafana integration 
was complete, analysis of the raw metrics revealed a sharp spike in the detected_bees 
count, reaching 672 at 12:34 UTC. This demonstrates that the detected_bees metric can 
serve as a powerful indicator for identifying large-scale events where a high volume of 
bees congregates at the hive entrance. 

 



 

 

Hive Defense and Robbing Attempts 

 



The system documented several instances of hive defense. For example, on September 
5th, video footage 1757061346.mp4 captured a clear instance of two guard bees 
intercepting an intruder and physically "escorting" it away from the entrance. The 
ability to automatically detect and catalog such events provides direct insights into 
colony defensiveness and resource competition. 

 

On september 14th, after two days of rainy and cloudy weather, an increased amount of 
bees was seen outside. Some were attacked by defenders. Compared to orientation 
flights, this time not much flying was seen. 

Seasonal Drone Expulsion 

On September 7th, the system recorded the seasonal expulsion of drones. The video 
footage captured numerous drones being denied entry to the hive by worker bees, 
which were observed actively blocking, dragging, and even attacking the drones' wings. 
This complex social behavior is a key indicator of the colony's preparation for winter 
and is precisely the type of event that can only be reliably captured through continuous 
video monitoring. 

 

https://drive.google.com/file/d/1XlvomCMDlMO597fmywlT0nY95bIqBYCt/view?usp=drive_link


Drone congestion on top of the plexiglass, mostly immobile. In next days, dead drones 
were seen on the landing board. 

 

On September 9 in video 1757415965.mp4, a worker bee is seen riding a drone on what it 
seems like agression, attacking its wing. We assume this is a tactic of the colony to 
conserve honey resources by causing drones to exit the hive and die from starvation.  

 

Removal of dead bees 

 



On September 8th at 16:42 and on September 10th at 11:55, multiple bees are seen 
moving dying drone away from the entrance, down the landing board which is also a 
cooperating behaviour 

 

Wasps 

On 10th of September in 1757487957.mp4 at ~10:05 a wasp is seen freely entering the 
hive​

 

Cooperative Behavior 

On September 9th, an interesting instance of social behavior was captured. A bee was 
observed struggling at approximately 13:45, apparently entangled or playing with a 
blade of grass near the entrance. Several other bees were recorded approaching the 
distressed bee, seemingly assisting in its efforts to get free. 

This type of cooperative behavior, while known to exist, is difficult to capture and 
quantify. The ability of the entrance-observer to record videos over long time, allows to 
capture such nuanced interactions, which highlights its value not just for tracking traffic, 
but for documenting complex social dynamics that could be correlated with overall 
colony health and cohesion. 

Furthermore, the detailed analysis of forager traffic will provide insights into pollination 
efficiency. By understanding how environmental factors influence foraging, beekeepers 

 



can make more informed decisions about hive placement and management to maximize 
pollination services. 

While the current focus is on the relationship between bee traffic and weather, the 
high-resolution data being collected will also serve as a valuable resource for future 
research. The detailed bee tracks, for example, could be used to train models to 
differentiate between different types of flights (e.g., foraging, orientation, cleansing) or 
to detect subtle behavioral changes that may be indicative of stress or disease. This rich 
dataset is a critical first step towards the ultimate goal of developing a comprehensive, 
non-invasive beehive monitoring system that can provide beekeepers with a deep 
understanding of their colonies' health and productivity. 

6. Future Work 

The entrance-observer system provides a robust foundation for non-invasive beehive 
monitoring, but the true potential of this technology lies in expanding its analytical 
capabilities. Our future work is structured around two key pillars: enhancing detection 
metrics and improving the hardware and software platform. 

6.1. Enhancing Detection Metrics 

The immediate priority is to move beyond bee counting and basic motion analysis to the 
detection of specific, high-value indicators of colony health and social behavior. This 
involves training and deploying more sophisticated computer vision models capable of 
identifying: 

●​ Varroa Mites: The detection of Varroa mites on bees is the most critical next step. 
This will require a high-resolution video dataset and a model trained to identify 
these small parasites. The ability to automatically quantify mite infestation levels 
would be a significant breakthrough for beekeepers, enabling targeted and timely 
treatments. 

●​ Pollen-Carrying Bees: Identifying bees returning to the hive with pollen is a 
direct indicator of foraging success and resource availability. This metric can 
provide valuable insights into pollination efficiency and the impact of 
environmental factors on foraging. 

●​ Queen and Drones: Differentiating the queen and drones from worker bees will 
allow for the monitoring of key colony events, such as the queen's mating flights 
and the seasonal expulsion of drones. 

●​ Social Interactions: Developing models to recognize and quantify social 
behaviors is a key area for future research. This includes detecting defensive 
actions against intruders, observing food exchange (trophallaxis), identifying 

 



hive "bearding" (bees congregating outside the entrance due to heat or 
overcrowding), and monitoring fanning behavior for hive ventilation. 

6.2. Hardware and System Improvements 

To support these enhanced detection capabilities, several hardware and system 
improvements are necessary: 

●​ Upgraded Camera and GPU: A 4K camera with a high frame rate (60 FPS) is 
essential for capturing the fine details required for mite detection. This must be 
paired with a more powerful GPU to handle the increased computational load of 
running multiple, complex models in real-time. 

●​ Weatherproof Enclosure: A robust, weatherproof enclosure with integrated LED 
lighting is needed to ensure consistent image quality and protect the hardware 
from the elements. We want to test two approaches - having device as part of the 
vertical hive, or have it only in front of the hive. Design decision here depends on 
ease of installation, maintenance and aesthetic look. 

●​ Developer-Friendly Platform: Given the challenges encountered with the Jetson 
Orin, we are considering a more developer-friendly platform, such as a Mac Mini, 
to accelerate development and deployment. This could allow us to have 60FPS 
video and multiple AI models running the inference 

●​ Alternative budget 

6.3. Advanced Model Architectures 

While YOLOv8n provides a strong baseline for real-time detection, future work will 
explore more advanced model architectures to enhance the system's analytical depth. 
The goal is to move towards open-ended detection that can identify a wider range of 
objects and behaviors without extensive retraining for each new class. 

One promising direction is the use of transformer-based models. Research such as 
BeeNet [16] has demonstrated that a combination of CNNs for feature extraction and a 
transformer encoder-decoder architecture can achieve high accuracy in fine-grained 
classification tasks, including bee species identification and health monitoring. However, 
it is worth noting that the authors of the BeeNet paper did not provide a public code 
repository, which makes it difficult to verify their findings and build upon their work. 
Nevertheless, the paper provides a valuable theoretical framework for the application of 
transformer-based models to bee monitoring. Adopting a similar approach could allow 
the entrance-observer to learn more complex visual features and perform more nuanced 
classifications, such as identifying different castes of bees or subtle indicators of disease. 

Finally, we will continue to evaluate the rapidly evolving landscape of object detection 
models optimized for edge devices. Models such as YOLOv10, which offers NMS-free 

 



training for lower latency, and RT-DETR, an end-to-end DETR variant, present 
compelling alternatives that could further improve the efficiency and accuracy of the 
entrance-observer on hardware like the NVIDIA Jetson series. We also performed 
preliminary experiments with Large Language and Vision Assistant (LLaVA) models 
[18], but found that their empirical precision for the specific task of bee detection was 
not as high as that of convolutional networks like YOLO. 

A primary goal for future work is to move from tracking bee populations to 
re-identifying individual bees over extended periods. The extensive track_history 
dataset generated by our system is ideally suited for this task. Following the 
methodology proposed by Chan et al. [20], we plan to use this data to train a 
re-identification model using self-supervised contrastive learning. This would enable us 
to track the foraging lifetime of individual bees, measure forager loss with high 
precision, and gain deeper insights into the division of labor within the colony. 

Furthermore, we plan to explore multimodal analysis by integrating audio data with the 
existing video stream. The distinct sound produced by drones, for example, could be 
used in conjunction with video to create a more robust drone detection system. 
Combining these data streams could lead to the development of models that capture a 
richer, more dynamic understanding of hive activity. 

The video dataset collected in this study is a critical first step towards these goals. By 
laying the groundwork for advanced parasite detection and behavioral analysis, we are 
moving towards a future where technology can help beekeepers manage their colonies 
more effectively and sustainably. 

7. Conclusion 

This paper has presented a practical methodology for monitoring beehive entrances 
using a powerful combination of computer vision and IoT technology for real-time data 
collection and cloud-based analysis. The entrance-observer system, built on an NVIDIA 
Jetson Orin Nano and a 4K USB camera, provides a non-invasive way to collect 
high-resolution data on bee behavior. The accompanying Gratheon web application 
offers a user-friendly platform for visualizing and analyzing this data for long-term 
observation and comparison. 

The system is designed to address some of the most pressing challenges in modern 
beekeeping, including forager loss, pollination efficiency, and the detection of Varroa 
mites. By providing beekeepers with real-time, actionable insights into their colonies, 
the entrance-observer has the potential to improve colony health, increase productivity, 
and make beekeeping more sustainable. 

 



The results of the study are promising. The system has demonstrated its ability to detect 
subtle changes in bee behavior, and the analysis of the relationship between bee activity 
and weather data has yielded valuable insights. 

It is important to acknowledge the limitations of the current system. The practical value 
of simply counting bees is limited. The true potential of this technology lies in its ability 
to detect parasites and other threats. The current camera resolution and frame rate may 
not be sufficient for reliable Varroa mite detection. Furthermore, the identification of 
individual unmarked bees remains a significant challenge. 

The future work outlined in this paper, focused on enhancing detection metrics, 
represents a clear path towards overcoming these limitations. The ultimate goal is to 
create a system that is not just a "toy" for researchers, but a practical and affordable tool 
that can make a real difference to the health and productivity of bee colonies. 
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