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Abstract

Traditional beekeeping relies on manual inspections that are inefficient and stressful for bees.
This paper introduces the entrance-observer, a non-invasive computer vision system for
monitoring honey bee colonies. Deployed on an NVIDIA Jetson Orin Nano, the system uses a
YOLOv8 model to analyze camera video stream of the hive entrance in real-time. It tracks
individual bees to gather metrics on forager traffic and introduces bee movement speed as a novel
proxy for colony health. Data is aggregated in the cloud for long-term analysis and correlation
with environmental factors. The system provides nuanced metrics for detecting complex
behaviors such as orientation flights, swarming, and robbing, offering beekeepers actionable
insights into pollination efficiency and forager loss. Furthermore, it creates a foundational video
dataset for developing future drone bee, bee pose, bee interaction and potentially varroa
mite-infected bee detection models. This paper details the system's architecture, methodology,
and findings, presenting a practical and scalable solution to key challenges in modern beekeeping.

The entrance-observer code is available at https://github.com/Gratheon/entrance-observer, and
the datasets are available at https://gratheon.com/research/Datasets
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1. Introduction

Honey bees (Apis mellifera) are essential for global food security, yet beekeepers face
immense challenges in maintaining healthy colonies. Traditional beekeeping is
characterized by unscalable work that relies on frequent, time-consuming, and
physically demanding manual inspections. Beekeepers must make critical decisions
about colony health, but they often lack the up-to-date and correct information needed
to do so effectively. A primary threat is the Varroa destructor mite, a parasite that can
decimate a hive if not managed effectively. Traditional monitoring methods, such as
manual inspections, are labor-intensive, stressful for the bees, and often fail to provide
the timely data needed for effective intervention. While tools like hive scales can
indicate changes in foraging activity, they do not offer insights into the underlying
causes, such as disease, forager loss, or parasite load.
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The limitations of existing methods highlight the need for more advanced, non-invasive
monitoring solutions. The ability to automatically detect parasites like Varroa mites and
other threats at an early stage would be a significant breakthrough for beekeepers,
enabling them to apply targeted treatments only when necessary, thereby reducing
chemical use and improving colony health. Furthermore, detailed monitoring of forager
traffic can provide valuable information about pollination efficiency and the impact of
environmental stressors, such as pesticides. This research focuses on solving several key
problems for beekeepers through continuous video analysis:

e Foraging Activity Analysis: Correlating forager traffic with weather and
environmental conditions to assess colony productivity and growth through
regular orientation flights.

e Pest and Predator Attacks: Identifying attacks from hornets, wasps, or robbing
bees from other hives.

e Seasonal Behavior Tracking: Monitoring events like the seasonal expulsion of
drones from the hive.

e Swarming Prevention: Early detection of pre-swarming behaviors to prevent
colony loss.

® Queen Health Monitoring: Observing the swarm queen's initial mating flights.

This paper presents a practical methodology for beehive entrance monitoring that aims
to address these challenges. We have developed a scalable system called the
entrance-observer, which uses a camera and an Al model running on an edge device to
continuously analyze bee activity.

The system is designed not only to count bee traffic but also to analyze movement
dynamics. We introduce bee movement speed on the landing board as a novel proxy for
colony health, hypothesizing that a colony's activity level, represented by speed, is a
sensitive indicator influenced by a wide array of factors. These include environmental
conditions (e.g., sun presence, wind, humidity), resource availability (e.g., pollen), and
internal or external stressors (e.g., Varroa mite infestation, pesticide exposure, hornet
attacks, hive congestion). This serves as a platform for developing more advanced
diagnostic tools, with a primary focus on the detection of Varroa mites and other
parasites. This paper details the system's architecture, the methodology for its
deployment and data collection, and discusses its potential to become a valuable tool for
modern, sustainable beekeeping.

1.1. Context: Smart Manufacturing in Beekeeping

The principles of Smart Manufacturing, which involve the deep integration of digital and
physical processes for automated, data-driven production, are increasingly relevant
beyond traditional factory settings. This paradigm can be extended to agriculture and
apiculture, creating a vision for "Smart Beekeeping." As outlined by us before [21], a



fully integrated smart apiary would combine various technologies—such as in-hive
sensors for temperature and humidity, robotics for automated frame extraction, and
cloud-based SaaS$ platforms for data analysis—to create a highly efficient and responsive
beekeeping operation.

In this context, the entrance-observer system serves as a critical component: a
non-invasive, real-time data acquisition module. It functions as the "eyes" of the smart
hive, providing the continuous, event-driven data on bee behavior that is essential for
the higher-level monitoring, forecasting, and automation central to the Smart
Manufacturing concept. This paper focuses on the development and validation of this
key vision-based module, which lays the groundwork for its integration into a larger,
fully automated beekeeping ecosystem.

2. Related Work

The application of technology to beekeeping, often referred to as "precision
beekeeping," has been a growing area of research. These technological approaches can
be broadly categorized into two main groups: systems that rely on in-hive sensors and
physical hardware to monitor colony conditions, and those that employ non-invasive
computer vision to analyze bee behavior externally.

2.1. Sensor and Hardware-Based Monitoring

A significant body of work has focused on using sensors to monitor the internal
conditions of the hive. These systems typically measure parameters such as
temperature, humidity, and acoustics to infer the colony's state [5]. Another example of
a sensor-based system is the work of Komasilovs et al. [6], who developed a modular
hardware system for precision beekeeping. Their system uses a Raspberry Pi to collect
data on temperature, weight, and sound from the hive, and a solar panel for power. The
data is then sent to a cloud-based data warehouse for analysis, with the goal of helping
beekeepers remotely identify different states of their colonies, such as swarming or
colony death. This work is part of the SAMS project, a European Union-funded initiative
to enhance international cooperation in sustainable agriculture. Another approach
involves hardware-based counters at the hive entrance. The "2019 Easy Bee Counter" by
Hudson [8], for example, is an open-source project that uses a custom-designed printed
circuit board with infrared sensors to count bees passing through physical gates. While
accessible for hobbyists, this method is intrusive and can be affected by environmental
factors like sunlight or propolis buildup.



2.2.Vision-Based Monitoring

Computer vision has emerged as a powerful tool for non-invasive beehive monitoring,
eliminating the need for intrusive hardware. Early work in this area often required
marking bees or using RFID tags, but more recent approaches focus on tracking
unmarked bees. Foundational research in this domain includes the work of Rodriguez et
al.,, who demonstrated the effectiveness of Convolutional Neural Networks (CNNs) for
the specific task of identifying pollen-bearing bees. In an early study, they systematically
compared traditional machine learning classifiers against both shallow and deep CNNs,
finding that a shallow CNN architecture achieved a high accuracy of 96.4%. Notably, this
simpler model outperformed deeper networks like VGG16, highlighting the importance
of model architecture in relation to specific, smaller datasets. This work also contributed
one of the first public datasets of annotated bee images, fostering further research. Their
later work [1] expanded on this by developing a more complex system using Part
Affinity Fields (PAFs) for pose estimation, enabling more robust tracking and pollen
detection on unmarked bees. Similarly, Marstaller et al. [2] proposed "DeepBees," a
multi-task CNN architecture for genus identification, pollen detection, and pose
estimation.

A major focus of vision-based research has been the detection of the Varroa destructor
mite. Non-invasive approaches have explored hyperspectral imaging to improve the
contrast between mites and bees [3], and the use of object detectors like YOLOv8 and
SSD. Bilik et al. [4] found that training a model to detect "infected bees" as a class was
more effective than detecting the mites themselves.

Some systems combine vision with other sensors in a hardware-centric design. The "Bee
Health Monitor" [9], detailed further by Nevlacil et al. [10], is an open-source project
that uses a Raspberry Pi to collect data from a camera, microphone, and various
atmospheric sensors. However, this system requires bees to pass through 3D-printed
tunnels to be monitored by the camera. This intrusive design, while allowing for
close-up imaging, alters the bees' natural behavior at the entrance.

Another notable project is "BeeAlarmed" by Hickert [11], which also uses a Jetson Nano
for vision-based analysis. The system uses a CNN to classify bees into several categories,
including those carrying pollen, infested with Varroa mites, or exhibiting cooling
behaviors. However, the "BeeAlarmed" hardware relies on a controlled, enclosed setup
that funnels bees "under a roof" across a pane with a uniform green background and
artificial lighting. This intrusive design, while simplifying the classification task, is
sensitive to background and lighting variations and does not capture behavior in a
natural context. In contrast, the entrance-observer is designed to be robust in natural,
uncontrolled lighting conditions, tolerating shadows and changing sunlight.
Furthermore, while "BeeAlarmed" focuses on static classification, the entrance-observer



introduces novel dynamic metrics, such as the speed and interaction of bees on the
landing board, offering a different and complementary dimension of behavioral analysis.

Beyond real-time monitoring systems, a significant area of research has focused on
creating platforms to facilitate the large-scale annotation and analysis of video data. A
key example is LabelBee [13], a web-based platform designed for the collaborative,
semi-automated annotation of honeybee behavior. LabelBee provides a suite of tools for
researchers to manually and automatically label events, track tagged individuals using
AprilTags, and build high-quality datasets. This "human-in-the-loop" approach is
invaluable for training and validating the complex models needed for behavior
recognition. While systems like LabelBee are essential for the research and development
phase, they differ from the entrance-observer in their primary function. LabelBee is a
post-processing and analysis tool for creating datasets, whereas the entrance-observer
is an edge-computing system designed for real-time, autonomous monitoring and data
collection in a production apiary environment.

While the entrance-observer focuses on aggregate metrics of bee traffic and behavior,
another significant challenge in vision-based monitoring is the long-term
re-identification of individual unmarked bees. Research by Chan et al. (2022) has shown
that this can be achieved by training deep learning models on large datasets. They
demonstrated that self-supervised learning, using short-term tracks of bees as training
data, is highly effective for building models that can re-identify individuals over multiple
days. This highlights the potential of large-scale video datasets, like the one generated
by entrance-observer, to serve as a foundation for developing such advanced
capabilities.

The entrance-observer system presented in this paper builds upon this body of
vision-based work but with a key distinction: it is designed to be completely
non-invasive, practical, and easy to deploy. By monitoring the unmodified hive entrance,
it captures more authentic behavioral data. It utilizes a state-of-the-art YOLOv8 model to
address the key challenges of forager loss, pollination efficiency, and Varroa mite
detection, aiming to be a practical tool for real-world apiaries.

3. System Architecture

3.1. Hardware

The hardware for the entrance-observer system is designed to be a powerful and robust
platform for edge computing. The core of the system is an NVIDIA Jetson Orin Nano 8GB,
a compact and powerful single-board computer with a GPU that is well-suited for
running Al models.



The video data is captured by a Mokose 4K USB camera, which is equipped with a
5-50mm varifocal lens. This combination allows for high-resolution video capture and
the flexibility to adjust the field of view to suit different hive entrance configurations.
The camera is mounted on an articulating arm, which allows for precise positioning.

3.2. Bill of Materials

The following table details the components used to build the entrance-observer system,
along with their approximate costs as of September 2025.

Component Description Price

Compute Module NVIDIA Jetson Orin Nano 8GB $249.00
Developer Kit

Display 7-inch Capacitive Touch Screen, $47.99
1024x600

Camera MOKOSE 4K@30fps USB Camera $154.50

Camera Lens 5-50mm HD CCTV Lens, 3MP, €43.35
Aperture F1.4

Storage SanDisk SSD Plus M.2 250GB NVMe €23.88
SSD

Connectivity Waveshare AC8265 Wireless NIC for €22.92

Jetson Orin Nano

Enclosure Acrylic Clear Case for NVIDIA Jetson €11.36
Nano

Camera Mount Security Wall Mount with 1/4 Screw $9.59
Head

3D-Printed Camera Custom-designed protective cover ~€5

Cover



Total ~$461 +
€101.51

We made a custom cover for the camera to protect electrical USB contacts from the rain
and UV rays. We used Ender V3 3d printer and Tinkercad. Internal grooves allow USB
wire to be kept inside and have mounting accessing the camera.

3.3. Software

3.3.1. entrance-observer application

The entrance-observer application is a Python-based software package that runs on the
edge device. It is responsible for capturing video, processing it in real-time, and
uploading the results to the cloud. The application is built using a modular architecture,
with different components responsible for different tasks.



Logs of service startup:

Creating new Ultralytics Settings v0.0.6 file
View Ultralytics Settings with 'yolo settings' or at '/root/.config/Ultralytics/settings.json'
Update Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. For help see https://docs.ultralytics.com/quickstart/#ultralytics-settings.
~ Running on Linux
4 Starting web server on http://0.0.0.0:3030 --
[ WARN:0@10.636] global cap.cpp:215 open VIDEOIO(V4L2): backend is generally available but can't be used to capture by name
*= Available cameras: ['/dev/video0']

Initializing camera with device=/dev/video@ and backend=200...
I\ Format before resolution: MIPG
A Failed to set Auto Exposure: request. , actual=3.0
# Convert RGB set to 1.0
W) Brightness set to 44.0 (requested: 44)
W Contrast set to 3.0 (requested: 3)
W) saturation set to 50.0 (requested: 50)
M Gain set to 0.0 (requested: 0)

Exposure set to 166.0 (requested: -7)
v White_balance_temperature set to 4600.0 (requested: 4000)
M Gamma set to 100.0 (requested: 78)
M Sharpness set to 7.0 (requested: 128)
W Backlight set to -1.0 (requested: 1)
M Autofocus set to 0.0
N Requested: 1280x720@30fps
N Actual: 1280x720@30.0fps
N\ Codec: MIPG
@ Using resolution: 1280x720
Calibrating camera FPS over 5 seconds at 1280x720 resolution...
“= Warming up camera...
W camera warm-up successful.
# Calibration successful: 15.01 FPS
4 Starting frame capture thread
[h264_v412m2m @ 0xfffec8002270] d not find a valid device
[h264_v412m2m @ Oxfffec8002270] can't configure encoder
[ERROI 8.327] global cap_ffmpeg_impl.hpp:3264 open Could not open codec h264_v412m2m, error: Unspecified error (-22)
[ERROR:1@18.327] global cap_ffmpeg_impl.hpp:3281 open VIDEOIO/FFMPEG: Failed to initialize VideoWriter
[ WARN:1@18.328] global cap.cpp:779 open VIDEOIO(CV_IMAGES): raised OpenCV exception:

0penCV(4.11.0) /io/opencv/modules/videoio/src/cap_images.cpp:267: error: (-215:Assertion failed) number < max_number in function 'icvExtractPattern'

A Failed to open VideoWriter with 'avcl' codec, trying 'mp4v'...

© Fallback codec 'mpdv' succeeded. Setting as preferred.
Recording a 30 second video at a target of 15.01 FPS...

“* Avg frame read time (last 100 frames): 0.0450s

“® Avg frame read time (last 100 frames): 0.0447s

“* Avg frame read time (last 100 frames): 0.0469s

“* Avg frame read time (last 100 frames): 0.0461s

m Video saved to ./videos/1757270248.mp4 (451 frames, 30.06s duration, avg write time: 0.0213s)
Recording a 30 second video at a target of 15.01 FPS...

“® Avg frame read time (last 100 frames): 0.0472s

“® Avg frame read time (last 100 frames): 0.0470s

The overall system architecture is composed of several microservices that work
together to collect, process, and display the data from the beehive. However
entrance-observer is self-sufficient and can collect and visualize data without cloud
services. The following diagram illustrates the flow of data and the interactions between
the different components:

The video processing pipeline is built using OpenCV. It captures frames from the camera,
resizes them to a manageable resolution, and then passes them to two separate queues:
one for video writing and one for Al processing. This multi-threaded approach ensures
that the video capture process is not blocked by the computationally intensive Al
processing.



entrance-observer video screenshot with Yolo model detections, entrance detection line
and bee movement tracks. A ruler added for reference of the zoom level
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Metrics

Bee detection and tracking is performed using a YOLOv8 model. The model has been
pre-trained on a large dataset of bee images and is able to detect and track individual
bees with a high degree of accuracy. The tracker assigns a temporary ID to each bee,
allowing its movement to be followed throughout a single 30-second video chunk. It is
important to note that these track IDs are not persistent and are reset with each new
video chunk. The application uses this short-term tracking information to calculate a
rich set of metrics over 30-second intervals, including:

® bees_in & bees_out: These metrics are determined using a virtual horizontal line
placed across the video frame. A bee is counted as "out" or "in" when the center
of its tracked bounding box crosses this line. The direction of crossing
determines whether the bee is entering or exiting. The system's logic can be
inverted based on camera placement (e.g., above or below the entrance).

e net_flow: The difference between bees_in and bees_out, indicating the net change
in the number of bees in the hive over the interval.

® avg_speed_px_per_frame: The average speed of all tracked bees, calculated as the
mean Euclidean distance (in pixels) traveled by each bee between consecutive
frames. This metric serves as a proxy for the overall activity level on the landing
board.

® p95_speed_px_per_frame: The 95th percentile of bee speeds. This metric is more
robust to outliers than the average and may better represent the speed of actively
foraging bees.
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The application also provides a local web UI, which is built using Flask. The web Ul
allows the user to view a live video feed from the camera, monitor the bee traffic

statistics, and adjust the camera settings.
Graphs of metrics in entrance-observer Ul from september 9
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3.3.2. Gratheon web application

The Gratheon web application is a cloud-based platform that provides a centralized
location for storing, visualizing, and analyzing the data from the entrance-observer
devices. The web application provides a user-friendly interface (including a mobile app)
that allows beekeepers to:

View video playback from their hives.

Monitor the bee traffic statistics in real-time.

Analyze historical data to identify trends and anomalies

Receive alerts and notifications about important events, such as a sudden drop in
forager activity or a potential hornet attack.

The web application is designed to be a powerful tool for beekeepers, providing them
with the information they need to make informed decisions about the management of
their colonies.

Gratheon web-app showing hive management along with entrance section (box) and
tied to it stream playbacks. Modular configuration allows to have multiple observable
hive entrances, which is not so common.

% app.gratheon.com/api

~_ Tallinn Pirita-Kose swarm hive

Jetson orin nano inspected entrance hive

3.4. System Performance and Resource Utilization

To evaluate the real-world performance of the entrance-observer on the edge device, we
collected resource utilization data using the tegrastats utility on the NVIDIA Jetson Orin
Nano. The following table summarizes the key performance metrics recorded while the
system was actively processing video, running the YOLOv8n model, and streaming data.



Metric Value Description

Total Power ~6.9W Average power draw for the entire Jetson
Consumption Orin Nano board (VDD_IN).
CPU/GPU Power ~2.05W Combined power consumption of the CPU

and GPU (VDD_CPU_GPU_CV).

RAM Usage ~4.2GB/ Memory utilization, approximately 55% of
7.6 GB the total available RAM.
GPU Utilization Variable The GPU load fluctuated based on the
(4% - 99%) complexity of the scene and number of
bees.
CPU Temperature ~57.5°C The core CPU temperature remained stable

under continuous operation.

The performance data reveals that the Jetson Orin Nano operates efficiently, with a total
power consumption of approximately 6.9 watts. This low power draw makes it suitable
for long-term deployment in an apiary, where it could potentially be powered by a solar
panel and battery system. The CPU temperature remained well within safe operating
limits at around 57.5°C, indicating that the passive cooling of the developer kit is
sufficient for this workload and no additional thermal management is required.

The RAM usage of ~4.2 GB indicates that the 8GB model of the Jetson Orin Nano is a
suitable choice, providing enough memory for the operating system, the
entrance-observer application, and the Al model, with some headroom for future
enhancements. The variable GPU utilization, which occasionally peaked at 99%,
underscores the computational demands of real-time object detection.

GPU peak loads are most likely caused by the Al inference process (model.track() in
src/main.py), which runs in a dedicated processing thread. The system's multithreaded
architecture effectively isolates I/0-bound tasks like disk writing and network uploads,
preventing them from impacting the GPU-intensive inference task.



4. Methodology

4.1. Experimental Setup

The experiment was conducted in a suburban apiary located in Tallinn, Estonia
(Pirita-Kose district, Geo coordinates 59.436962 x 24.753574). The beehive used for the
study was a 3-section vertical hive with Estonian frames, manufactured by Karlwood.
The hive was positioned on four large bricks, with the entrance facing south-west, and
was protected from the wind by a house wall on the eastern side.

The entrance-observer device was installed at the hive entrance, with the camera
positioned above the entrance to provide a clear, top-down view of the bees. The camera
was mounted on a "Security Camera Mount Bracket for Camera with 1/4 Screw Head
Wall Mount," which allowed for precise and stable positioning. The NVIDIA Orin Nano
was housed in a wooden enclosure on top of the hive, physically separated from the bees
to avoid any disturbance. Power was supplied to the device via an extension cord
connected to a standard 220V household outlet.

Challenges

During the setup process, several hardware and software challenges were encountered.



On the hardware side, the NVIDIA Jetson Orin Nano did not provide sufficient
power to the Mokose 4K camera over USB3. An attempt to use an external
powered USB hub resulted in the camera and several USB ports on the Jetson
Orin Nano being damaged due to an incorrect voltage setting (12V instead of 5V).
As aresult, a backup camera had to be used, connected to the single remaining
USB-C port, which limited the video capture to USB2 speeds. This hardware
failure constrained the video resolution to 1280x720 and the frame rate to 15
FPS.

The Wi-Fi signal at the apiary was not strong enough for the Jetson Orin Nano to
maintain a stable connection, so a TP-Link Wi-Fi extender was installed to boost
the signal.

On the software side, installing PyTorch with GPU support on the Jetson Orin
Nano proved to be a significant hurdle. To overcome the PyTorch dependency
issues, a Docker-based approach was adopted, using the official Ultralytics
Docker image. While this solved the dependency issues, it also meant that a
native Python UI could not be used. Consequently, a web-based Ul was developed
to provide a way to preview the results and configure the system.

Furthermore, initial attempts on September 3rd to implement a
high-performance, GPU-accelerated video capture pipeline using GStreamer were
unsuccessful. This effort was hampered by persistent "Argus" errors related to
the camera drivers and the discovery that the Jetson Orin Nano's hardware does
not include a dedicated h264 encoder chip. This limitation prevented efficient,
high-resolution video compression on the device. Consequently, this approach
was abandoned in favor of a less efficient, purely software-based video capture
method using OpenCV, which contributed to the constraints on frame rate and
resolution. This experience suggests that alternative hardware, such as an Apple
Mac Mini or a newer NVIDIA Jetson model with more robust multimedia
encoding capabilities, could be a more viable option for future iterations.

Docker Build Failures and Disk Space Exhaustion: A significant challenge was
encountered during the Docker build process on the Jetson Orin Nano. The build
would consistently fail with a "no space left on device" error. This was traced
back to the copy . . instruction in the Dockerfile, which was attempting to copy
the entire project directory, including gigabytes of recorded video files (videos/,
remote-videos/), into the Docker image. This bloated the build context to over
27GB, exceeding the available disk space. The issue was resolved by creating a
.dockerignore file in the project's root directory.




Remote access

For connectivity, the system initially relied on a local area network (LAN) over WiFi for
remote access via SSH and a web interface. This was later upgraded to Tailscale, a
commercial VPN solution, which enabled secure remote monitoring and video file
downloads from any location, facilitating off-site system checks and data retrieval.

Remote desktop access was also explored using VNC (Virtual Network Computing).
While previous experiments with a Jetson Nano (a different device) had been successful
using RealVNC, this approach failed with the Jetson Orin Nano. A connection could be
established, but no graphical user interface was displayed, rendering it unusable for
remote control. Future iterations may explore web-based VNC solutions like noVNC,
inspired by its successful implementation in other robotic remote lab environments [6].

Jetson Nano VNC and Jetson Orin Nano VNC:

NVINDIA

4.2. Data Collection

Data collection began on September 4th and concluded on September 27th. Over this
period, we captured a comprehensive dataset spanning various weather conditions and
times of day. While the system underwent periodic maintenance and adjustments, the
entrance-observer application successfully recorded video in 30-second chunks
throughout the daylight hours for the majority of the experiment.

The raw video files were periodically synchronized from the Jetson Orin Nano to a
remote machine for backup and further analysis using a shell script that leverages rsync.
This script runs in a continuous loop, ensuring that the video data is efficiently and
reliably transferred over the Wi-Fi network.

We also tested automatic file upload of resized videos from the device to the cloud
web-app (with AWS S3 as storage layer). These videos already included bounding boxes
and track information and is needed for quickly assessing situation by the beekeeper.
Over the this period we evaluated the cost of storage of such data to be about 3-4 $ (per
beehive).



4.2.2 Correlating data with weather and plant blooming factors

In addition to the video data, historical weather data for the apiary's location is being
collected from the Open-Meteo API (archive-api.open-meteo.com). This data includes a
wide range of meteorological variables, such as solar radiation, wind speed and gust,
cloud cover, precipitation, atmospheric pressure, and air pollution (PM2.5 and PM10).
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Rows/Root - optional

hourly

Advanced Options - optional

Ro

ot returns object instead array?

Is data in columnar format?

Atmospheric pressure

1020 hPa

1018 hPa

1016 hPa

1014 hPa

1012 hPa

1010 hPa

erY

Columns - optional

Selector

Selector

Selector

Selector

Selector

Selector

Selector

09/01 00:00 09/0112:00 09/02 00:00 09/02 12:00

Pollution (pm2.5 particles)

14 pg/m?*
12 pg/m?
10 pg/m*
8 ug/m*
6 ug/m*
4 ug/m?

2 ug/m?

Pollution

16 pg/m*
14 pg/m?
12 pg/m?
10 pg/m?*
8 pg/m?
6 pg/m*
4 ug/m?
2 pg/m?

pm10

09/0100:00 09/0112:00 09/02 00:00 09)

(pm10 particles)

/02 12:00

09/0112:00 09/02 00:00 09/02 12:00

time

ragweed_pollen

alder_pollen

birch_pollen

grass_pollen

mugwort_pollen

olive_pollen

09/03 00:00

08/03 00:00

09/03 00:00

09/03 12:00

09/03 12:00

09/03 12:00

as

09/04 00:00

08/04 00:00

09/04 00:00

Title

Title

Title

Title

Title

Title

Title

json

09/04 12:00

09/04 12:00

09/04 12:00

09/04 12:00

Table view @
09/05 00:00 09/05 12:00 09/06 00:00
© Headers, Request params
formatas | Time (UNIX's )
formatas  Number
formatas  Number
formatas  Number
formatas  Number
formatas  Number
formatas  Number
09/05 00:00 09/05 12:00 09/06 00:00
09/05 00:00 09/05 12:00 09/06 00:00
09/05 00:( 09/05 12:00 09/06 00:00

Actual

09/06 12:00
Min

0 Grains/m*
0 Grains/m®
0 Grains/m®
0 Grains/m*
0 Grains/m*

0 Grains/m*

09/06 12:00

09/06 12:00

09/06 121

@ Last7 day:

08/07 00:00
Max

10.8 Grains/m?
2.30 Grains/m®
0.400 Grains/m*
0 Grains/m*

0 Grains/m*

0 Grains/m*

09/07 00:00

09/07 00:00

09/07 00:00

s - Q@ Q

0.944 Grains/m*

0.457 Grains/m?

0.0562 Grains/m®
0 Grains/m*

0 Grains/m*

0 Grains/m*

09/07 12:00

09/07 12:00

09/07 12:00



4.2.3. Dataset Availability

Datasets collected during this research are publicly available at:

e https://gratheon.com/research/Datasets
e Google Drive
e Youtube https://www.youtube.com/watch?v=0G791]Nb1aA

The collection includes the following:

Daily metrics

Every 30 seconds, metrics as JSON object were appended to the metrics_*.jsonl files
Example of metrics dataset in JSONL format:

{"timestamp": "2025-09-06T05:03:54.564032", "metrics": {"bees_in": @, "bees out":

0, "detected_bees": 37, "avg_speed_px_per_frame": 3.39, "p95_speed_px_per_frame":
6.43, "stationary_bees_count": 4, "net_flow": 0}}

{"timestamp": "2025-09-06T05:04:24.770983", "metrics": {"bees_in": @, "bees_out":
0, "detected _bees": 26, "avg_speed_px_per_frame": 4.7, "p95_speed_px_per_frame":
9.65, "stationary_bees_count": 2, "net_flow": 0}}

Bee tracks history

Similar to metrics, we store track history of individual bees that were detected by yolo
model. Note that we used bee detection confidence was relatively low, default yolo
model value of 0.1 and that it did not guarantee that single bee could not lose its track
over time. Example of a single entry (tracks of individual bees per frame within 30 sec
video chunk) of tracks dataset in JSONL format (~40-50MB per day):

{"timestamp": "2025-09-06T05:01:54.546608", "frame_dimensions": {"height": 720,
"width": 1280}, "track _history": {"38": [[1150, 45], [1156, 44], [11l6e, 43],
[1162, 42], [1165, 41], [117e, 41], [1172, 44], [1175, 37], [1182, 40], [1188,
40]], "4@": [[1099, 49], [1098, 49], [1099, 49], [1099, 49], [1098, 48], [1098,
4971, [1098, 49],

Video datasets

1280x720px. 30 min chunks. 15FPS. 5-25mb per chunk. mp4 file names are in UTC
timestamps.


https://gratheon.com/research/Datasets
https://drive.google.com/drive/folders/12QVrB-gmoln-tNeFB6f1G5LH72bBCPV8?usp=drive_link
https://www.youtube.com/watch?v=oG791JNb1aA

Video Dataset type 1

Zoom at landing board ~ 40cm wide. Camera placed on third hive section

e September 04
o some chunks have pairs with _detect.mp4 suffixes, showing yolov8 model
detections.
e September 05
o Duration ~8h (11:30 - 20:00 EEST)
o Sunny weather.
o ~ 25GBin total
e September 6th. Sunny weather.
o Duration ~8h (8:00-15:36, 19:35-20:35 EEST)
o ~13:20 a flight pattern is seen

Video Dataset type 2

New zoom level of landing board area (23cm wide). Camera placed on third hive section

e September 7th
o Duration ~ 3h (12:00-15:05 EEST)
o Sunny weather with clouds and gust after 16:00
e September 7th
o Dataset duration ~ 3h (12:00-15:05 EEST)
o 1280x720px. 30 min chunks. 15FPS.
o Sunny weather with clouds and gust after 16:00
o New zoom level done at 12:00 EEST of landing board area (23cm wide).
e September 8th
o Dataset duration ~3.5h (13:52-17:33 EEST) at peak time with orientation
flights
o Full duration (8h) available on youtube
o Full duration (8h) available on youtube
e September 9th
o Dataset duration ~3h (12:00-15:00 EEST)

Video Dataset type 3

Camera placed on second hive section (closer), changed zoom, removed the glass and
aluminium boundaries, added stones instead. Counting line moved closer to the hive
entrance.

e September 10th
o 11:30-17:00


https://drive.google.com/drive/folders/1TQxpUFSc13xWLE_0gA4BkzPv8amcFyc-?usp=drive_link
https://drive.google.com/drive/folders/1E8p_d_rdb_Mq2IjoOyw4OVaWrs37xj2s?usp=drive_link
https://drive.google.com/drive/folders/1E8p_d_rdb_Mq2IjoOyw4OVaWrs37xj2s?usp=drive_link
https://drive.google.com/drive/folders/1L25SnvC_IDGOZlkE_vWidIPIKZilKURE?usp=drive_link
https://youtu.be/oG791JNb1aA
https://youtu.be/oG791JNb1aA
https://drive.google.com/drive/folders/1T9zKrfkNYAl4NHn6E1F8O6stDdiA544f?usp=drive_link

o acopy uploaded to youtube -
https://www.youtube.com /watch?v=3040y4sBHtM

id:230822 bee 0.81

i1d:230824 bee 0.71

fid: 230830 bee 0.83

| ’

This collection of annotated video and corresponding metrics serves as a valuable
resource for the research community. It can be used not only to replicate the findings of
this study but also as a foundational dataset for training and validating new models.
Potential applications include improving bee detection precision under diverse
conditions (e.g., varying zoom levels, lighting, and shade) and developing classifiers to
distinguish between different bee activities, such as flying versus walking.

4.2.4. Bee Detection Model Training

The bee detection model was trained using the YOLOv8n architecture, chosen for its
optimal balance of speed and accuracy on edge devices like the NVIDIA Jetson Orin
Nano. The training was conducted in the Google Colab environment, leveraging its
cloud-based GPU resources (NVIDIA T4).

The model was trained on the "Bees on Hive Landing Boards" dataset [15], which was
sourced from Roboflow. This dataset, created by Sledevicius and Matuzevicius, consists
of 14,199 training images, 1,353 validation images, and 676 test images. A key feature of
their work is the focus on capturing images of beehive entrances with native landing
boards, without artificial backgrounds, which aligns with the non-invasive approach of
the entrance-observer. The training data was augmented with three outputs per training
example, using techniques such as rotation (between -15° and +15°), brightness
adjustments (between -15% and +15%), and exposure adjustments (between -10% and
+10%) to improve the model's robustness.


https://www.youtube.com/watch?v=3O4oy4sBHtM

After 25 epochs of training, the model achieved a mean Average Precision (mAP50-95)
of 0.77 on the validation set, demonstrating a high of accuracy in detecting bees. The
initial weights for the YOLOv8n model and training methodology were adapted from the
'Counting bees with the LABRADOR board' project by Marcelo Rovai [8], which provided
a strong foundation for our bee detection model.

From empirical observations, model quality is good when running detections on
homogeneous surface with only bees being present.

However in more complex scenes, it is prone to have false positive detections, for
example when running app from Mac OSX:

1 Hive Entrance T

Camera Settings

Brightness =g 96
Contrast - 30
Saturation -l 28
Gain { 0
Exposure —— -6
White Balance e 4000
Gamma - 78
Sharpness ~ co—— 128

Backlight Comp el 1

Traning notebook is available at
https://github.com/Gratheon/entrance-observer/tree/main/training-notebook

Weights at https://github.com/Gratheon/entrance-observer/tree/main/weights

4.2.5 Bee Pose Model Training and Evaluation

To gain a deeper understanding of bee-to-bee interactions and individual movement, we
evaluated pose estimation models. The hypothesis is that by tracking the keypoints of a
bee's body, we can more accurately determine its orientation and direction of
movement. This significantly improves the accuracy of metrics like bees_in and bees_out
and provides a richer dataset for analyzing complex social behaviors like trophallaxis or
guarding.

We did quick checks of several state-of-the-art animal pose estimation toolkits,
including SLEAP (Pereira et al., 2022), DeepLabCut (Mathis et al., 2018), and
DeepPoseKit (Graving et al., 2019). These frameworks have proven to be highly effective
for tracking multiple body parts on a variety of species. An initial exploration of this


https://github.com/Gratheon/entrance-observer/tree/main/training-notebook
https://github.com/Gratheon/entrance-observer/tree/main/weights

concept was also conducted using the beepose library [17], used by LabelBee (Rodriguez
et al., 2019) project [14]. While the library is now outdated, it served as a
proof-of-concept for the value of pose estimation in this domain. We are also aware of
the work done by api.ai team with apic-bee-pose-dataset [19], but their model is closed
and dataset is not quite reuseable due to license and due to very high zoom level and
detailed 32 keypoint-skeleton.

After evaluation, we trained a model using DeepLabCut. We defined 13-keypoint
skeleton where thorax connected most of the nodes:

multianimalbodyparts:
- head

- thorax

- abdomen

- antenna-left

- antenna-right
- fore-leg-left
- fore-leg-right
- mid-leg-left

- mid-leg-right
- hind-leg-left
- hind-leg-right
- wing-left

- wing-right

The following are the results from our model training on 0SX:
Training for epoch 200 done, starting evaluation
Epoch 200/200 (lr=1e-05), train loss ©0.00241, valid loss 0.00294
Model performance:

metrics/test.rmse: 62.60

metrics/test.rmse_pcutoff: 56.85

metrics/test.mAP: 69.38



metrics/test.mAR: 76.67

Inference results of keypoints on a fresh video:

Pose integration challenges

Integrating this model into the entrance-observer presents significant challenges.

1. Stability. DeepLabCut library inference did not work properly out of the box and
did generate fatal errors. Visualization with skeleton also seems to connect
different bees, we suspect the problem is in the way identities are stored
internally as columns and how drawing of keypoints is implemented.

2. Inference time. Preliminary testing on Macbook shows that inferencing a 30 sec
video takes over 2 minutes, thus making performance ~ 3 FPS.

Video metadata:
Overall # of frames: 451
Duration of video [s]: 30.03
fps: 15.02

resolution: w=1280, h=720

Running pose prediction with batch size 8



zoo | I | 51451

[02:06<00:00, 3.56it/s]
Processing... /Users/artjom/git/models-beepose2/test.mp4

Loading From
/Users/artjom/git/models-beepose2/testDLC_Resnet50_GratheonBeePoseSepl3shufflel sn
apshot_best-170.h5

soo | I

3. Limited resources. Running pose estimation on Jetson Orin Nano, which already
dedicates a substantial portion of its limited computational resources to the
YOLOv8n detection model, requires careful optimization to avoid performance
bottlenecks.

4.3. Data Analysis

The data analysis pipeline is designed to provide both real-time insights and in-depth,
long-term scientific investigation. The process begins at the edge, where the
entrance-observer application processes video in 30-second chunks, as configured by
the VIDEO_CHUNK_LENGTH_SEC environment variable. For each chunk, the system calculates
the bee traffic metrics described in Section 3.2.1. These metrics are then transmitted to
the Gratheon web application's telemetry API.

Each 30-second aggregation of metrics is stored as a distinct EntranceMovementRecord in
a MySQL database, linked to its corresponding hive and section ID. Initially, we
experimented with InfluxDB, a time-series database, which performed well for this task.
However, to maintain a consistent technology stack with the rest of the application and
simplify data access and management, we chose to use MySQL for the time being. We
may revisit this decision in the future and explore other specialized time-series
databases such as Mimir, ClickHouse, or Prometheus to optimize for performance and
scalability. This granular, time-stamped data structure provides a rich dataset for
detailed analysis. The metrics stored for each interval include bees_in, bees_out,
net_flow, avg_speed_px_per_frame, p95_ speed _px_per_frame, stationary bees count, and

detected_bees

The second stage of the analysis focuses on correlating the bee traffic data with the
historical weather data. We use open-meteo to get historical weather data.

While the Gratheon web application provides real-time visualization of these
correlations through Grafana dashboards, a more rigorous statistical analysis can be
performed to quantify the relationships between bee behavior and environmental
factors.


https://open-meteo.com/en/docs/historical-weather-api?hourly=temperature_2m,relative_humidity_2m,rain,wind_speed_10m,cloud_cover,direct_radiation,diffuse_radiation,precipitation,weather_code,pressure_msl&daily=sunrise,sunset&timezone=auto&start_date=2025-09-05&latitude=59.436962&longitude=24.753574

Grafana Ul for correlation detection

Beehive activity metrics (stored in mysql, queried via graphql API through
telemetry-api) in Grafana for September 7-9th:
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Weather conditions at the same time:
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Details connecting grafana to backend GraphQL API that uses telemetry-api. Notice
using sending currently selected time range as arguments and parsing output

Data source | @® Gratheon GraphQL APl v = ® > Queryoptions MD = auto = 2251 Interval = 20s

e A (Gratheon GraphQL API)
Type | JSON « | Parser Trybackend! @  Default ©  Source URL ~ | Format  Table . | DHep
Method = POST v URL | https://graphgl.gratheon.com/graphql @ Headers, Body, Request params

v URL options Method, Body, Additional headers & parameters

Body Type HTTP Headers ®  URL Query Params &

None Raw Form Data x-www-form-urlencoded GraphQL AEHIREED Add query param

Graphal query ©

query ExampleQuery ($timeFrom: DateTime!, $timeTo: DateTime!
entranceMovement(hiveld: 68, boxId: 250, timeFrom: $timeFr
.. on EntranceMovementlist{
metrics {
time
detectedBees
stationaryBees
beeInteractions
¥
}
3

GraphQL Variables (&

{ —
"timeFrom": "${__from:date:iso}" ,
"timeTo": "${__to:date:iso}"

¥

+ Parsing options & Result fields Field types, alias and selectors

Rows/Root - optional Columns - optional
data.entranceMovement.metrics Selector detectedBees as | Title formatas | Number - (8]
Vi . ) .
Selector time as Title format as Time v
Advanced Options - optional Selector stationaryBees as Title format as Number v
Root retums object instead array? Selector beelnteractions as | Title formatas | Number - |[8]
Is data in columnar format? Add Columns

Hypothesis

Using described tooling, our plan for long-term future study is to test several specific
hypotheses. We posit that bee movement speed and overall traffic are complex variables
influenced by multiple factors. Our primary hypotheses include:

1. Environmental Drivers: There is a significant positive correlation between
ambient temperature (above a certain threshold), solar radiation, and the
number of outgoing bees (bees_out). Conversely, increased wind speed, humidity,
and precipitation decrease overall bee traffic.

2. Colony Stressors: The presence of stressors such as Varroa mite infestation,
pesticide exposure, or predator attacks (e.g., hornets) will lead to a measurable
decrease in the average and 95th percentile of bee movement speed
(avg_speed_px_per_frame and p95_speed_px_per_frame).



3. Internal Hive Conditions: Factors such as hive placement, orientation, and
insufficient internal space (congestion) will correlate with changes in landing
board activity, potentially affecting stationary_bees_count and bee_interactions.
For such study we would need multiple beehives studied at the same time.

Our goal is to develop a strategy for anomaly detection based on statistical deviations
from the established baseline of normal activity. An anomaly will be defined as a data
point that falls outside a specified number of standard deviations from the predicted
value, given the time of day and prevailing weather conditions. This will enable the
system to flag unusual events that may require the beekeeper's attention. For that we
could use models like prophet by meta [22]

Spatial heatmap analysis

In addition to statistical analysis, we use visualization techniques to explore the spatial
patterns of bee movement. A heatmap of bee traffic on the landing board was be
generated from the track_history data. This visualization reveals the most frequented
areas, providing insights into the bees' preferred paths and loitering zones.

The heatmasp for the track data collected on September 6th and 9th as examples are
shown below. Notice that there are clearly visible hot spots (highlighted in yellow) of
stationary bees, we're assuming these are defenders, spread out and positioned in the
landing area.

The aluminium-glass construction designed to prolong bee movement for better
counting and tracking also shows some of the inefficiencies - bees avoid cold metal, and
they do spend too much time on top of the glass falsely assuming they can enter
somewhere on top.

Thery also are present adjacent to hive entrance angles (highlighted in blue) where
partial entry under aluminium frame was possible too at the beginning on 6th of
september and later on 9th when they collectively cleared out the entrance.

They also tend to like to be in the corners, possibly because it offers some area of
protection from the wind or potential preditors.

Also notice that glass border is also noticeable, because bees could move on it
upside-down and flip on the other side.



Notice how on September 10th after repositioning of the camera and removal of the
glass and aluminium boundaries, how the heatmap changed. Bees position themselves
right at the entrance for best control under the protection of the hive. Also notice how
placement is not symmetrical, we believe this is due to the fact that bees flight routes go
to the left. So heatmap analysis can give a hint which area bees are landing from the
most. The stone contours being visible again seems to prove that bees either take
shelter from the wind or feel safer from preditors while having a wall or a roof behind
them. Notice also how hot spots of statical bees are also present in this image too.




Composite heatmap of beehive entrances over 10-15th of September shows how activity
of bees depends on the weather. The black area on September 15th heatmap (last) is a
wet leaf that apparently bees do not like to walk on.

Now comparing this to weather conditions on same days shows correlation with
temperature and wind.

= Hor > Dashboards > Weather # o Wt Add v =] @ < (@ 2025-09-10 06:01:56 t0 2025-09-15 22:14:19 ~ > @ [» IR
Solar radia
667 mins
333 mins ||II I -l
A | I | i
0s ' 1 1 R
%M0000  0SMOTB00  OW/MONOD  09MOBO0 01600 03120000 0920800 09121600 09130000  OS30800 09131600 | 09140000 09140500 041600 0SS0000  O3/S0B00 09151600

diffuse_radiation == direct_radiation

09/1012:00 09/1018:00 09/1100:00 09/1106:00 09/1112:00 09/1118:00 09/1200:00 09/1206:00 09/1212:00 09/1218:00 09/1300:00 09/1306:00 09/1312:00 09/1318:00 09/1400:00 09/1406:00 09/1412:00 09/1413:00 09/1500:00 09/1506:00 09/1512:00 0815 18:00

ﬂunuuunﬂnﬂunﬂnﬂﬂnn n

ol treeea. 0000..00000000000000 40110 ”uuuuuuuﬁuuuu,-=; ,,,,,,,,,,,,,,,, a0lbdanfl0nod0at]

" 00/1012:00 09/1018:00  08/11 oaoo nemusoo 09/1112:00 09/1118:00 09/1200:00 09/1206:00 09/1 )0:00 09/1306:00 09/1312:00 09/1318:00 09/14 00:00 osmosoa 09/141200 n9/meuo 09/1500:00 09/1506:00 09/1512:00 09/15 18:00

09/1012:00 09/1018:00 09/1100:00 09/1106:00 09/1112:00 09/1118:00 09/1200:00 09/1206:00 09/1212:00 09/1218:00 08/1300:00 09/1306:00 09/1312:00 09/1318:00 09/1400:00 09/1406:00 09/1412:00 09/1418:00 09/1500:00 09/15 06:00 09/15 12:00  09/15 18:00
~Wind

Wind and wing gust

60 km/h
50 kmih N
40 km/h —

30km/h

0kmh ="
10 km/h

09/1012:00 09/1018:00 09/1100:00 09/1106:00 09/1112:00 09/1118:00 09/1200:00 09/1206:00 09/1212:00 09/1218:00 09/1300:00 09/13 06:00 08/1312:00 09/1318:00 09/1400:00 09/14 06:00 09/1412:00 09/1418:00 09/15 00:00 09/1506:00 09/1512:00 09/1518:00
_ = wind_speed 1om

Looking at bee activity metrics from MySQL, we can see that some of our telemetry data
is incomplete - on 11th of September we collected data only up to 14:00 and on 14th of
September we collected data only after 15:00, so in reality those heatmaps should be
brighter. However 12th of September shows drastic reduction in activity due to cold
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4.4. Experimental Log

September 5, 2025:
e System running and collecting data.
September 6, 2025:

e Work was completed to integrate Grafana dashboards into the web application.
e Fixed telemetry-api to accept new set of metrics and configured Grafana to
visualize them.

September 7, 2025:

e (Camera Field of View Adjustment: The camera's varifocal lens was adjusted to
narrow the field of view from ~40 cm to ~23 cm to increase pixel density per bee
for future mite detection experiments.

e Landing Board Construction Improvement: Gaps near the entrance were sealed
to ensure more accurate forager counts.

e Note on Data Consistency: It is acknowledged that these changes will
significantly alter the bee traffic metrics. Data collected from this point forward is
not directly comparable to the data from September 4-6.



September 10, 2025:

e (Camera placed on second hive section (closer), changed zoom, removed glass and
aluminium boundaries, added stones instead

September 14,2025

e First half of the day system did not send telemetry, likely because of disk space
e Trained and evaluated bee pose model

5. Results and Discussion

The data collection for this study has been completed, and a comprehensive analysis has
been performed on the gathered dataset. Based on the methodology outlined in Section
4.3, the following sections present the results and their implications.

The primary goal of the data analysis was to move beyond simple bee counting and to
model the complex interplay between bee behavior and environmental factors. The
statistical analyses confirmed our primary hypotheses. Specifically, we found a strong
positive correlation between bee activity (particularly bees_out and net_flow) and
favorable weather conditions, such as higher temperatures and solar radiation.
Conversely, we found a negative correlation with adverse conditions like high wind
speeds and precipitation.

The results are presented through a combination of statistical summaries and
visualizations. Time-series plots are used to illustrate the diurnal patterns of bee
activity and their relationship with weather variables. Scatter plots with regression lines
visually represent the correlations between specific metrics, and heatmaps are
employed to visualize activity patterns across different times of day and days of the
week.

The findings from this study are expected to have several practical implications for
beekeepers. By quantifying the relationship between bee behavior and the environment,
we can establish a baseline for normal colony activity under various conditions. This
baseline will be crucial for the development of an effective anomaly detection system
and comparison analysis of multiple colonies. The ultimate goal is to create a system
that automatically identifies significant events and notifies the beekeeper, enabling them
to intervene only when necessary as part of the larger, modular robotic beehive system.

5.1. Behavioral Observations

Initial observations have already demonstrated the system's potential for detailed
behavioral analysis. The following are specific events captured by the system:



Orientation Flights

On September 8th, a significant increase in bee presence, speed and in/out metrics was
noted around 16:00-18:00, which is characteristic of orientation flights for young bees,
this was confirmed when watching the video playback with bees flying above the
landing board for these 2 hours. Although this event occurred before Grafana integration
was complete, analysis of the raw metrics revealed a sharp spike in the detected_bees
count, reaching 672 at 12:34 UTC. This demonstrates that the detected_bees metric can
serve as a powerful indicator for identifying large-scale events where a high volume of
bees congregates at the hive entrance.
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The system documented several instances of hive defense. For example, on September
5th, video footage 1757061346.mp4 captured a clear instance of two guard bees
intercepting an intruder and physically "escorting" it away from the entrance. The
ability to automatically detect and catalog such events provides direct insights into
colony defensiveness and resource competition.

On september 14th, after two days of rainy and cloudy weather, an increased amount of
bees was seen outside. Some were attacked by defenders. Compared to orientation
flights, this time not much flying was seen.

Seasonal Drone Expulsion

On September 7th, the system recorded the seasonal expulsion of drones. The video
footage captured numerous drones being denied entry to the hive by worker bees,
which were observed actively blocking, dragging, and even attacking the drones' wings.
This complex social behavior is a key indicator of the colony's preparation for winter
and is precisely the type of event that can only be reliably captured through continuous
video monitoring.


https://drive.google.com/file/d/1XlvomCMDlMO597fmywlT0nY95bIqBYCt/view?usp=drive_link

Drone congestion on top of the plexiglass, mostly immobile. In next days, dead drones
were seen on the landing board.

On September 9 in video 1757415965 .mp4, a worker bee is seen riding a drone on what it
seems like agression, attacking its wing. We assume this is a tactic of the colony to
conserve honey resources by causing drones to exit the hive and die from starvation.

Removal of dead bees



On September 8th at 16:42 and on September 10th at 11:55, multiple bees are seen
moving dying drone away from the entrance, down the landing board which is also a
cooperating behaviour

Wasps

On 10th of September in 1757487957 .mp4 at ~10:05 a wasp is seen freely entering the
hive
| e S

Cooperative Behavior

On September 9th, an interesting instance of social behavior was captured. A bee was
observed struggling at approximately 13:45, apparently entangled or playing with a
blade of grass near the entrance. Several other bees were recorded approaching the
distressed bee, seemingly assisting in its efforts to get free.

This type of cooperative behavior, while known to exist, is difficult to capture and
quantify. The ability of the entrance-observer to record videos over long time, allows to
capture such nuanced interactions, which highlights its value not just for tracking traffic,
but for documenting complex social dynamics that could be correlated with overall
colony health and cohesion.

Furthermore, the detailed analysis of forager traffic will provide insights into pollination
efficiency. By understanding how environmental factors influence foraging, beekeepers



can make more informed decisions about hive placement and management to maximize
pollination services.

While the current focus is on the relationship between bee traffic and weather, the
high-resolution data being collected will also serve as a valuable resource for future
research. The detailed bee tracks, for example, could be used to train models to
differentiate between different types of flights (e.g., foraging, orientation, cleansing) or
to detect subtle behavioral changes that may be indicative of stress or disease. This rich
dataset is a critical first step towards the ultimate goal of developing a comprehensive,
non-invasive beehive monitoring system that can provide beekeepers with a deep
understanding of their colonies' health and productivity.

6. Future Work

The entrance-observer system provides a robust foundation for non-invasive beehive
monitoring, but the true potential of this technology lies in expanding its analytical
capabilities. Our future work is structured around two key pillars: enhancing detection
metrics and improving the hardware and software platform.

6.1. Enhancing Detection Metrics

The immediate priority is to move beyond bee counting and basic motion analysis to the
detection of specific, high-value indicators of colony health and social behavior. This
involves training and deploying more sophisticated computer vision models capable of
identifying:

e Varroa Mites: The detection of Varroa mites on bees is the most critical next step.
This will require a high-resolution video dataset and a model trained to identify
these small parasites. The ability to automatically quantify mite infestation levels
would be a significant breakthrough for beekeepers, enabling targeted and timely
treatments.

e Pollen-Carrying Bees: Identifying bees returning to the hive with pollen is a
direct indicator of foraging success and resource availability. This metric can
provide valuable insights into pollination efficiency and the impact of
environmental factors on foraging.

e Queen and Drones: Differentiating the queen and drones from worker bees will
allow for the monitoring of key colony events, such as the queen's mating flights
and the seasonal expulsion of drones.

e Social Interactions: Developing models to recognize and quantify social
behaviors is a key area for future research. This includes detecting defensive
actions against intruders, observing food exchange (trophallaxis), identifying



hive "bearding" (bees congregating outside the entrance due to heat or
overcrowding), and monitoring fanning behavior for hive ventilation.

6.2. Hardware and System Improvements

To support these enhanced detection capabilities, several hardware and system
improvements are necessary:

e Upgraded Camera and GPU: A 4K camera with a high frame rate (60 FPS) is
essential for capturing the fine details required for mite detection. This must be
paired with a more powerful GPU to handle the increased computational load of
running multiple, complex models in real-time.

e Weatherproof Enclosure: A robust, weatherproof enclosure with integrated LED
lighting is needed to ensure consistent image quality and protect the hardware
from the elements. We want to test two approaches - having device as part of the
vertical hive, or have it only in front of the hive. Design decision here depends on
ease of installation, maintenance and aesthetic look.

e Developer-Friendly Platform: Given the challenges encountered with the Jetson
Orin, we are considering a more developer-friendly platform, such as a Mac Mini,
to accelerate development and deployment. This could allow us to have 60FPS
video and multiple Al models running the inference

e Alternative budget

6.3. Advanced Model Architectures

While YOLOv8n provides a strong baseline for real-time detection, future work will
explore more advanced model architectures to enhance the system's analytical depth.
The goal is to move towards open-ended detection that can identify a wider range of
objects and behaviors without extensive retraining for each new class.

One promising direction is the use of transformer-based models. Research such as
BeeNet [16] has demonstrated that a combination of CNNs for feature extraction and a
transformer encoder-decoder architecture can achieve high accuracy in fine-grained
classification tasks, including bee species identification and health monitoring. However,
it is worth noting that the authors of the BeeNet paper did not provide a public code
repository, which makes it difficult to verify their findings and build upon their work.
Nevertheless, the paper provides a valuable theoretical framework for the application of
transformer-based models to bee monitoring. Adopting a similar approach could allow
the entrance-observer to learn more complex visual features and perform more nuanced
classifications, such as identifying different castes of bees or subtle indicators of disease.

Finally, we will continue to evaluate the rapidly evolving landscape of object detection
models optimized for edge devices. Models such as YOLOv10, which offers NMS-free



training for lower latency, and RT-DETR, an end-to-end DETR variant, present
compelling alternatives that could further improve the efficiency and accuracy of the
entrance-observer on hardware like the NVIDIA Jetson series. We also performed
preliminary experiments with Large Language and Vision Assistant (LLaVA) models
[18], but found that their empirical precision for the specific task of bee detection was
not as high as that of convolutional networks like YOLO.

A primary goal for future work is to move from tracking bee populations to
re-identifying individual bees over extended periods. The extensive track_history
dataset generated by our system is ideally suited for this task. Following the
methodology proposed by Chan et al. [20], we plan to use this data to train a
re-identification model using self-supervised contrastive learning. This would enable us
to track the foraging lifetime of individual bees, measure forager loss with high
precision, and gain deeper insights into the division of labor within the colony.

Furthermore, we plan to explore multimodal analysis by integrating audio data with the
existing video stream. The distinct sound produced by drones, for example, could be
used in conjunction with video to create a more robust drone detection system.
Combining these data streams could lead to the development of models that capture a
richer, more dynamic understanding of hive activity.

The video dataset collected in this study is a critical first step towards these goals. By
laying the groundwork for advanced parasite detection and behavioral analysis, we are
moving towards a future where technology can help beekeepers manage their colonies
more effectively and sustainably.

7. Conclusion

This paper has presented a practical methodology for monitoring beehive entrances
using a powerful combination of computer vision and [oT technology for real-time data
collection and cloud-based analysis. The entrance-observer system, built on an NVIDIA
Jetson Orin Nano and a 4K USB camera, provides a non-invasive way to collect
high-resolution data on bee behavior. The accompanying Gratheon web application
offers a user-friendly platform for visualizing and analyzing this data for long-term
observation and comparison.

The system is designed to address some of the most pressing challenges in modern
beekeeping, including forager loss, pollination efficiency, and the detection of Varroa
mites. By providing beekeepers with real-time, actionable insights into their colonies,
the entrance-observer has the potential to improve colony health, increase productivity,
and make beekeeping more sustainable.



The results of the study are promising. The system has demonstrated its ability to detect
subtle changes in bee behavior, and the analysis of the relationship between bee activity
and weather data has yielded valuable insights.

It is important to acknowledge the limitations of the current system. The practical value
of simply counting bees is limited. The true potential of this technology lies in its ability
to detect parasites and other threats. The current camera resolution and frame rate may
not be sufficient for reliable Varroa mite detection. Furthermore, the identification of
individual unmarked bees remains a significant challenge.

The future work outlined in this paper, focused on enhancing detection metrics,
represents a clear path towards overcoming these limitations. The ultimate goal is to
create a system that is not just a "toy" for researchers, but a practical and affordable tool
that can make a real difference to the health and productivity of bee colonies.
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