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Abstract

Smart-beehive technologies represent a paradigm shift in beekeeping, transitioning from
traditional, reactive methods toward proactive, data-driven management. This systematic
literature review investigates the current landscape of intelligent systems applied to bee-
hives, focusing on the integration of IoT-based monitoring, sensor modalities, machine
learning techniques, and their applications in precision apiculture. The review adheres
to PRISMA guidelines and analyzes 135 peer-reviewed publications identified through
searches of Web of Science, IEEE Xplore, and Scopus between 1990 and 2025. It addresses
key research questions related to the role of intelligent systems in early problem detection,
hive condition monitoring, and predictive intervention. Common sensor types include en-
vironmental, acoustic, visual, and structural modalities, each supporting diverse functional
goals such as health assessment, behavior analysis, and forecasting. A notable trend toward
deep learning, computer vision, and multimodal sensor fusion is evident, particularly in
applications involving disease detection and colony behavior modeling. Furthermore, the
review highlights a growing corpus of publicly available datasets critical for the training
and evaluation of machine learning models. Despite the promising developments, chal-
lenges remain in system integration, dataset standardization, and large-scale deployment.
This review offers a comprehensive foundation for the advancement of smart apiculture
technologies, aiming to improve colony health, productivity, and resilience in increasingly
complex environmental conditions.

Keywords: smart beehives; precision apiculture; hive monitoring; intelligent systems;
Internet of Things; datasets

1. Introduction

Honeybees (Apis mellifera) are essential pollinators in ecosystems and agricultural
systems worldwide. However, their populations have been declining due to multiple
stressors including climate change, pesticide exposure, habitat loss, and pathogens [1-3].
This decline threatens global food security and biodiversity and has motivated researchers
to develop more efficient and non-invasive hive monitoring strategies [4,5].

Precision apiculture, or smart beekeeping, uses embedded sensors, wireless commu-
nications, and Al algorithms to monitor hives in real-time and support timely interven-
tions [6-8]. These systems can capture acoustic signals, environmental conditions, hive
weight, and visual cues to detect anomalies such as swarming, queen loss, or disease
presence [9-11].
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Technological advancements include the integration of wireless sensor networks
(WSNs) and low-power communication protocols such as ZigBee, LoRa, and NB-IoT [12,13].
In parallel, artificial intelligence techniques, including convolutional neural networks
(CNNs), support vector machines (SVMs), and random forests, are increasingly used to
analyze hive soundscapes, image data, and temporal patterns [14-16].

Despite the potential of these systems, the literature remains fragmented. Most studies
focus on proof-of-concept deployments with limited duration and controlled environments,
lacking robustness and generalizability [2,8]. Moreover, there is limited cross-comparison
of sensing approaches and a lack of publicly available datasets for benchmarking [17,18].
These issues persist despite growing interest and publication volume: heterogeneous
application goals, diverse sensing modalities, and a variety of communication protocols
and data analysis methods all hinder the synthesis of best practices and limit cross-study
generalizability. Many systems are still prototypes that have not been validated over long
time periods or in real-world apiaries, making it difficult to assess their robustness [19,20].

To address these gaps, this systematic literature review analyzes 135 peer-reviewed
publications between 1990 and 2025. We categorize the reviewed works across six dimen-
sions: sensor modality, communication method, data storage approach, data processing
algorithm, and application objective, which collectively serve to inform the sixth dimen-
sion—hive state classification. To ensure transparency and reproducibility, this systematic
review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) guidelines. PRISMA provides a structured framework for conducting and
reporting systematic reviews.The aim of this systematic review is to answer the following
research questions (RQ):

*  RQ1: What types of sensing modalities are most commonly used in smart beehive systems?

*  RQ2: In which application domains are smart technologies for beehives being de-
ployed, and how have these focal areas evolved over time?

*  RQ3: Which data analysis and machine learning methods have been applied, and
how prevalent are advanced techniques in comparison to classical approaches?

*  RQ4: What technical and practical limitations are reported across these studies?

e RQ5: What publicly available datasets exist for smart-beehive research, what data
modalities do they include, and how are these datasets labeled and used to develop or
evaluate machine learning models?

Through this analysis, we identify prevailing trends, methodological limitations, and
areas for future research in smart apiculture systems.

2. Materials and Methods

This systematic review was conducted in accordance with the PRISMA 2020 guide-
lines [21], including development of a review protocol, a comprehensive multi-database
search, and documentation of the screening process in a PRISMA flow diagram in Section 3.

2.1. Eligibility Criteria

The primary eligibility criteria for inclusion in this systematic literature review were
defined to identify studies that implement intelligent systems within the scope of precision
apiculture, particularly involving smart beehive technologies. The broader term ‘smart
beehive” was utilized to encompass studies that apply various smart technologies such as
sensors, IoT (Internet of Things), artificial intelligence (AI), machine learning (ML), and
data analytics specifically targeted at beekeeping and hive management. To enhance study
quality, we further restricted the corpus to peer-reviewed publications reporting empirical
data and excluded editorials, abstracts, theses, and articles lacking reproducible methods or
data. Two authors independently screened titles and abstracts and assessed full texts against
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these criteria; disagreements were resolved by discussion or, when necessary, by consulting
a third reviewer. In addition, a rudimentary quality assessment was applied during full-text
screening: we required each study to describe its sensor configuration, provide at least
one quantitative metric (e.g., accuracy, precision, recall or error) and report experimental
conditions (sample size, location or duration). Papers lacking these methodological details
were excluded to ensure reproducibility of the extracted information.

Studies that focused solely on traditional beekeeping practices without technological
integration, or those dealing only with biological or ecological aspects without applying
sensor technology or data-driven analytical methods, were excluded.

Only peer-reviewed articles and conference papers published in English between
January 1990 and April 2025 were considered. The detailed eligibility criteria utilized for
this systematic review are summarized in Table 1.

Table 1. Eligibility criteria for systematic review of smart beehive technologies.

Criteria Description

Type of Data Studies must report on environmental, acoustic, visual, or
multisensory data collected from within or around
beehives, supporting sensor-based monitoring or
data-driven analysis.

Algorithms or Techniques While not a mandatory component, the adoption of
data-driven approaches is widely considered
advantageous for deriving structured insights from sensor
observations and facilitating evidence-based
interpretations in smart beekeeping research.

Comparator RQ1: Types of sensor modalities used.
RQ2: Application domains.
RQ3: Categories of ML and analytical methods used and
trends in their adoption over time.
RQ4: Reported technical and practical limitations,
including system cost, data quality, power consumption,
and deployment challenges.
RQ5: Usage of publicly available datasets, categorized by
data modality, labeling approach, and their role in model
training or evaluation.

Outcome Detailed characterization of smart beehive systems,
including sensor setups, communication methods, ML/ Al
techniques, goals and reported limitations.

Timing Articles published from January 1990 to April 2025.

Environmental or No restrictions; studies from any geographic region

Geographical Context are considered.

Publication Type Peer-reviewed journal articles and conference papers
published in English.

2.2. Information Sources

A search of the Web of Science, IEEE Xplore, and Scopus databases was conducted
on 7 April 2025, to identify relevant scientific publications related to intelligent systems
in beekeeping. These databases were chosen for their broad coverage of peer-reviewed
literature in engineering, agriculture, and computer science. The search included all
publications available up to 7 April 2025.
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2.3. Search Strategy

A comprehensive literature search was conducted on 7 April 2025, using three major
scientific databases: Web of Science, IEEE Xplore, and Scopus. These databases were
selected for their extensive coverage of peer-reviewed scientific and engineering literature
relevant to intelligent systems and applied technologies. The search strategy was developed
collaboratively by two reviewers and was piloted and iteratively refined to balance recall
and specificity.

The search strategy was carefully adapted to the syntax and filtering capabilities of
each database, with a temporal range covering publications from 1990 to 2025. In all
cases, we combined general technology keywords (precision, smart, intelligent, automated)
with beekeeping-specific terms (beekeeping, beehive, apiculture, apiary) using Boolean
operators. Additional phrase searches (“precision beekeeping”, “smart beehive”) were
included to capture variations. The aim was to identify studies focused on the application
of intelligent systems in beekeeping, particularly involving smart beehive technologies. In
the Web of Science database, the search query combined general terms such as precision,
smart, intelligent, and automated with domain-specific keywords like beekeeping, beehive,
apiculture, and apiary. These were searched within all fields using the Boolean operator OR
to ensure inclusivity. Filters were applied to restrict the document type to journal articles
and conference proceedings, and the date range was set from 1990 to 2025.

For IEEE Xplore, the query was adapted to search across all metadata fields using the
same combinations of general and domain-specific terms. The results were further refined
to include only journal and conference publications. Across all databases we restricted the
language to English and excluded document types such as editorial notes, letters and abstracts.
Where available, we applied citation indexing filters to prioritize peer-reviewed literature.

In Scopus, the search was conducted within titles, abstracts, and keywords using an
equivalent Boolean logic structure. Publications were filtered to include only articles and
conference papers written in English and published after 1990.

An overview of the search queries applied to each database, including Boolean logic
and filtering criteria, is provided in Table 2.

Table 2. Search strategy and number of retrieved records per database.

Database Search Query

Web of Science  ALL = (( (precision OR smart OR intelligent OR automated) AND
(beekeeping OR beehive OR apiculture OR apiary) ) OR “precision
beekeeping” OR “smart beehive”) AND DT==(“ARTICLE” OR “PRO-
CEEDINGS PAPER”) AND DOP=1990-01-01/2025-04-07

IEEE Xplore (“All Metadata”:"precision beekeeping” OR “All Metadata”:”smart
beehive” OR ( (“All Metadata”:“precision” OR “smart” OR “in-
telligent” OR “automated”) AND (“All Metadata”:“beekeeping”
OR “beehive” OR “apiculture” OR “apiary”) ) ) AND (“Content-
Type”:“Journals” OR “ContentType”:“Conferences”)

Scopus TITLE-ABS-KEY( ( ( precision OR smart OR intelligent OR automated )
AND ( beekeeping OR beehive OR apiculture OR apiary ) ) OR “preci-
sion beekeeping” OR “smart beehive” ) AND PUBYEAR > 1990 AND
( LIMIT-TO ( DOCTYPE,“ar” ) OR LIMIT-TO ( DOCTYPE,“cp” ) ) AND
( LIMIT-TO ( LANGUAGE,“English” ) )

2.4. Data Extraction and Categorization

To systematically analyze and compare smart beehive systems, we conducted a struc-
tured data extraction process. Each reviewed study was annotated across six dimensions:
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Bibliographic Info, Sensor Type, Communication Type, Method /Technique Type, Goal Cat-
egory, and Key Aspects. These dimensions enable uniform representation of heterogeneous
systems and serve as the foundation for subsequent visualizations and synthesis.

Figure 1 illustrates the structure of the extraction matrix. For each publication, binary
encoding (0/1) was applied to indicate the presence of a given feature or method. Addi-
tionally, descriptive metadata was manually extracted and paraphrased from each study to
provide contextual insight.

PUBLICATION

Bibliographic info Sensor type Communication Method/Technique Goal Category Key aspects
type type

3 o b N N

QE) © N S 7:\1 - N S = N = = N @ NS = Brief description of the

- @ P~ [ o o [} [y [ . o o o D
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Figure 1. Structure of the data extraction matrix used to encode publications.

To ensure clarity and reproducibility, the coding schema was supported by a formal
taxonomy of categories, as shown in Figure 2. This taxonomy was used to organize the
various sensor types, communication technologies, analytical methods, and goal categories.
In addition to enumerating the building blocks of our review, the figure also depicts the
typical flow of information through a smart-beehive system. Readings from the sensors
used in a given publication or project may be logged to local or cloud storage (forming a
dataset) and/or transmitted via wired, short-range or long-range wireless links to a remote
computer. On the remote side, selected analytical methods are applied to these measure-
ments in order to derive the desired goal about the hive or bee state. For completeness we
note that some investigations do not collect new data but instead start from previously
curated datasets—this alternative path is indicated by the blue arrow in the figure.

Each of the main categorical dimensions is described in detail below:

Sensor Type: This dimension captures which physical sensing technologies were
used in each system. A total of 41 binary-coded sensor types were grouped into six
high-level categories:

*  Environmental/Weather Sensors (e.g., temperature, humidity, air pressure; these
include sensors monitoring conditions both inside the hive (internal climate) and in
its surroundings).

*  Acoustic/Vibration Sensors (e.g., microphones, piezoelectric sensors).

* Imaging Sensors (e.g., cameras, optical counters, thermal imaging).

*  Hive Structural Sensors (e.g., weight/load cells, strain gauges).

¢  Motion/Orientation Sensors (e.g., accelerometers, gyroscopes).

¢ Air Composition Sensors (e.g., CO,, VOC, O,).

*  Bee Activity Counters (e.g., infrared gates, tags).

Communication Type: This category encodes the technologies used to transmit data
from the hive. The classification includes:

*  Short-Range Wireless (e.g., Zigbee, Wi-Fi, Bluetooth).
. Long-Range Wireless (e.g., LoRa, NB-IoT, Sigfox, GSM).
¢  Wired Communication (e.g., Ethernet, PowerLine).
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Figure 2. Overview of the classification taxonomy used during the data extraction process. Orange

arrows indicate the typical flow starting from sensor measurements; the blue arrow denotes studies

that bypass data acquisition and start from existing datasets.

Method/Technique Type: This is the most granular dimension, with over 180 tags,

grouped into ten parent categories:

Statistical and Time-Series Analysis (e.g., regression, correlation, ARIMA, VAR).
Feature Extraction and Signal Processing (e.g., FFT, MFCC, DWT).

Classical Machine Learning (e.g., SVM, Random Forest, k-NN, Naive Bayes).

Deep Learning and Neural Networks (e.g., CNN, LSTM, Transformer-based models).
Computer Vision and Image Analysis (e.g., contour detection, image segmentation)
Unsupervised Learning and Anomaly Detection (e.g., clustering, outlier detection).
Rule-Based Systems and Thresholding (e.g., thresholding (T1, T2, T3, T*), Custom
swarming algorithm).

Data Fusion and Ensemble Methods (e.g., weighted multi-criteria aggregation algo-
rithm, Majority voting).

Expert Systems and Fuzzy Logic (e.g., Fuzzy-stranded-NN, fuzzy logic model (FLM)).
Sensor Analysis/Domain-Specific (e.g., BFCI formula: 6 -T +b-P+c - W
(weather scoring)).

Goal Category: Each system was also classified by its intended application, which

helps contextualize the chosen sensors and methods. The following seven goal categories
were used:

Monitoring: Real-time reporting of hive metrics.

Behavior Detection: Recognizing bee behaviors.

Health Assessment: Detecting disease or colony vitality issues.
Prediction/Forecasting: Estimating future events like swarming or yield.
Optimization/Decision Support: Guiding interventions and hive management.
System/IoT Development: Engineering and infrastructure for sensing platforms.
Threat Detection: Identifying predators, theft, or environmental hazards.
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Key Aspects: This field contains a brief textual summary of the study’s technical
contribution, extracted from the abstract or discussion. It often includes insights into the
system’s novelty, testing conditions, or dataset characteristics. Although not used for
quantitative analysis, it adds interpretive richness to the dataset.

Bibliographic Info: For traceability, each entry includes citation metadata (author,
title, year, source type) alongside classification. This enables filtering by publication date,
venue type (conference/journal), or other bibliometric properties.

The result of this data extraction process is a multidimensional matrix that enables
consistent, reproducible analysis across the reviewed literature. All subsequent quantitative
results and visualizations—including heatmaps, frequency distributions, and co-occurrence
charts—are derived from this underlying structure.

3. Results and Discussion
3.1. Corpus and Structured Summary of Included Studies

The selection of studies was conducted following the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) 2020 guidelines. A total of 917 records
were identified through database searches on 7 April 2025, across three major scientific
databases: Web of Science (1 = 409), Scopus (n = 377), and IEEE Xplore (n = 131). After
automatic removal of duplicates, 532 unique records remained.

Title screening excluded 246 records based on relevance. The remaining 286 articles
were subjected to abstract screening and full-text assessment, during which 151 were
excluded for not meeting the inclusion criteria (e.g., lacking empirical data, not involving
intelligent systems, or focusing solely on ecological aspects). Ultimately, 135 studies were
retained for full analysis.

The complete selection workflow is illustrated in Figure 3.

Records identified from
database serach:

« Web of Science (n = 409) Record.s removed before

. Scopus (n = 377) screening:

+ |EEEXplore (n=131) « Duplicate records
removed (n = 385)

Y

Total (n = 917)

A

Y

Titles screened (n = 532) Records excluded (n = 246)

Abstracts screened and full texts
assessed for eligibility (where is
applicable)

A 4

Records excluded (n = 151)

(n = 286)

A

Studies included in review

(n = 135)

Figure 3. Flow diagram illustrating the publication identification and screening process following
PRISMA guidelines (template adapted from Page et al. [21], CC BY 4.0).
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The selected studies were systematically coded into a structured extraction matrix,
as described in Section 2.4. This matrix forms the empirical foundation for all subsequent
analyses of technological patterns, analytical techniques, and system goals. A condensed
version of the data is presented in Table A1 in Appendix A.

3.2. Overview

This organizational framework enables structured comparison of methodological
approaches, sensor configurations, and system goals. By categorizing studies based on
their intended purpose, the review highlights prevailing trends, emerging directions, and
underexplored topics within the domain of smart beekeeping systems.

Figure 4 illustrates the distribution of the reviewed works by publication type and
research objective. Among the 135 included studies, 93 were journal articles (68.9%) and
42 were conference papers (31.1%), indicating a preference for peer-reviewed journal

publication within the research community.

Figure 5 presents a heatmap illustrating the distribution of reviewed journal publica-
tions by year. The data reveal a steady increase in research activity related to smart beehive
technologies, with a notable surge beginning around 2020. Computers and Electronics in
Agriculture is the most prominent journal, publishing 15 of the reviewed studies. This
reflects the strong alignment between agricultural engineering and the development of
digital monitoring systems.

Publication Type
B Journal article
B Conference paper

Figure 4. Distribution of publication types.

Other leading publication venues include Sensors, Applied Sciences, and Ecological
Informatics, all of which support interdisciplinary research at the intersection of sensing
technologies, environmental monitoring, and applied sciences. The “Others” category
consolidates several journals with smaller contributions, indicating broader, though more
dispersed, interest in the topic across additional academic platforms.
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Figure 5. Number of reviewed publications by journal and year.

Figure 6 presents the distribution of reviewed conference publications by year. Al-
though conferences represent a smaller share of the overall scholarly output compared to
journals, they remain an essential channel for disseminating technical innovations in smart-
beehive systems. Among them, IEEE SOUTHEASTCON contributes the highest number
of papers, consistently serving as a venue for research on sensor systems, communication
protocols, and embedded platforms relevant to apiculture.

Other conferences, including Engineering Veracruz, CSCITA, and the Internet of
Sounds Symposium, each contributed a single publication, highlighting the growing inter-
disciplinary interest in applying domain-specific technologies to beekeeping. The “Others”
category similarly comprises venues with one publication each.

2019 IEEE International _ 0 o 0 N 0 0 o N 40
Conference on Engineering Veracruz, ICEV 2019
35
2023 4th International
Symposium on the Internet of Sounds, 1SIoS 2023 ~ 2 € 9 0 L © ¥ a4 30
2
L
Conference Proceedings - 25 ®
g IEEE SOUTHEASTCON ~ 0 0 0 0 ! ! 0 3 2
g z
£ =205
S Others- 3 1 1 1 3 13 13 1 36 &
-15 €
=
Proceedings of SPIE -
The International Society for Optical Engineering - 0 € © Q L ® ¥ 2 -10
-5
Total- 4 1 1 1 4 16 14 1 42

2015 2016 2017 2020 2019 2023 2024 2025 Total
Year

Figure 6. Number of reviewed publications by conference and year.

Overall, the trend lines across both publication types reflect an emerging, but rapidly
professionalizing research landscape. While journal publications dominate the discourse,
conferences continue to provide a dynamic space for the presentation of nascent research
and the cultivation of scholarly dialogue. The consistent appearance of certain venues over
multiple years affirms the establishment of recurring academic communities interested
in precision apiculture. Notably, our search did not retrieve contributions from major
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agricultural engineering conferences (e.g., ASABE or European Federation of Agricul-
tural Engineers); this absence underscores the need for greater cross-fertilization between
apiculture and mainstream agricultural technology forums. Furthermore, we observed that
much of the research in this domain has been published in engineering-oriented journals
and conferences, with relatively few contributions in apiculture or agriculture-specific
venues. This suggests a need for better cross-disciplinary dissemination and collaboration
to ensure smart beehive technologies address practical beekeeping challenges and scientific
questions in apiculture.

In terms of research focus, the most prevalent functional goals across the reviewed
literature were Health Assessment (36 papers) and Behavior Detection (35 papers), which
together comprise over half of the corpus. Health Assessment studies typically aimed to
evaluate colony condition or detect signs of disease and stress, while Behavior Detection
focused on identifying bee activities such as foraging, swarming, or in-hive movement
patterns through visual, acoustic, or motion-based cues. The Monitoring category included
27 studies centered on real-time tracking of environmental or hive-level parameters. Pre-
diction/Forecasting, found in 17 papers, involved anticipating future hive states such as
swarming events or honey yield. Optimization/Decision Support appeared in 8 studies
and focused on data-driven recommendations for hive management. System/IoT Develop-
ment, present in 7 works, primarily addressed sensor integration, platform engineering,
or hardware optimization. Finally, Threat Detection was the least represented category,
with only 5 studies focused on identifying risks such as predators, theft, or environmental
anomalies. These distributions are illustrated in Figure 7, while a complete mapping of
publications by goal category is provided in Table 3.

Final Goal Category
Health Assessment
Behavior Detection
Monitoring
Prediction / Forecasting
Optimization / Decision Support
System / lIoT Development
Threat Detection

Figure 7. Distribution of primary research goals.

Beyond static category counts, Figure 8 illustrates the temporal progression of the four
most prevalent research goals from 2020 to 2024 (Figure 8a) , along with a snapshot of their
current distribution in early 2025 (Figure 8b).

Health Assessment consistently remained the dominant category throughout this pe-
riod, with a notable peak in 2024. This sustained trend highlights the continued importance
of diagnosing colony conditions and detecting signs of disease using sensor-derived data
such as audio, weight, or thermal profiles.

Behavior Detection showed a steady increase in interest, peaking in 2024 with
11 publications—making it the second most active category that year after Health As-
sessment. This underscores growing research attention to behavioral analysis using
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Goal Category
Behavior Detection

Health Assessment
Monitoring
Prediction / Forecasting

video, acoustic, and motion sensing, often paired with computer vision and machine
learning techniques.

Table 3. Mapping of included studies to their primary research goal categories.

Main Goal Category Publications
Monitoring [4,7,8,13,15,16,22-42]
Behavior Detection [9,10,12,43-74]
Health Assessment [11,14,75-108]
Prediction/Forecasting [2,109-124]
Optimization/Decision Support [125-132]
System/IoT Development [1,3,5,6,133-135]
Threat Detection [136-140]

Monitoring was highly active in 2020 but declined in later years, with minor resurgence
in 2023 and 2024. These early peaks likely reflect the foundational role of IoT-based data
collection systems that support more advanced analytics downstream.

Prediction/Forecasting showed a clear upward trajectory, with activity growing
steadily from 2020 (1 paper) to a peak in 2024 (6 papers). This progression indicates
a shift toward model-based, anticipatory systems that leverage historical and real-time data
for proactive decision-making.

Together, these trends point to a maturing research landscape—moving from sensor
infrastructure and basic data reporting toward complex behavioral inference and predictive
analytics in smart apiculture.

Behavior Detection

Health Assessment

Monitoring

Prediction / Forecasting

< ———

2020

2021

2022 2023 2024 0 1 2 3 4 5
Year Number of Publications
(a) (b)

Figure 8. Combined visualization of publication trends for the four most common research goal
categories. (a) shows the yearly evolution from 2020 to 2024, while (b) highlights current progress
in 2025.

Figure 9 presents a word cloud generated from the abstracts of the reviewed studies,
highlighting the most frequently occurring terms in smart beehive literature. Dominant
keywords such as system, monitoring, data, honey, and colony reflect the field’s central
focus on automated hive management and data-centric decision-making. The prominence
of terms like monitoring and data reinforces the foundational role of sensor networks and
continuous observation, while frequent mentions of honey and colony emphasize biological
productivity and colony-level welfare as key research drivers.
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Figure 9. Word cloud of the most frequent terms appearing in abstracts of publications.
3.2.1. Sensors in Smart-Beehive Systems

The following subsections explore sensor modalities used in smart-beehive systems.
A wide range of sensor types have been employed across the reviewed smart beehive.
Figure 10 summarizes the distribution of sensor modalities by indicating how many of
the 135 studies involved each sensor type. It is important to note that the presence of a
sensor in a study does not necessarily imply that the sensor was physically deployed by
the authors. In many cases, the researchers either collected their own data using such
sensors or utilized publicly available datasets obtained from hives instrumented with the

corresponding sensor types. Consequently, multiple sensors may be counted per study,
and the totals in Figure 10 exceed the number of studies reviewed.

Motion/Orientation Sensors
Air Composition Sensors

Bee Activity/Counter Sensors
Hive Structural Sensors
Imaging Sensors
Acoustic/Vibration Sensors

Environmental/Weather Sensors

0 10 20 30 40 50 60
Number of Papers

Figure 10. Prevalence of different sensor types in smart beehive studies.

Several clear patterns emerge from Figure 10. Environmental sensors are the most com-
monly used, featured in 66 studies, which accounts for approximately 49% of the publications.
This prevalence reflects the foundational importance of internal/external climate monitoring
for assessing hive health and the relative ease of collecting such data [7,40,42,132].

Close behind are acoustic/vibration sensors, used in 52 studies, representing about
39% of the total. Their popularity underscores the value of hive sound patterns—acoustic
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signals provide insights into colony behavior, queen status, swarming tendencies, and
stress indicators [43,48,53,84,90].

Imaging sensors appear in 49 studies, making up roughly 36% of the reviewed publica-
tions. The growth in computer vision methods, driven by increasingly accessible hardware
and advances in image processing, has made visual analysis a leading choice for bee traffic
monitoring and pathogen detection [10,81,82,110].

Hive weight/structural sensors are used in 34 studies, which corresponds to approxi-
mately 25%. This highlights the utility of weight measurements for tracking honey accu-
mulation, food reserves, and colony strength with load cells or strain gauges [4,25,30,86].

More specialized sensor types are used less frequently. Bee activity counters appear
in 13 studies, amounting to about 10%, and are often implemented through tags and
cameras, infrared gates, or other entryway counters for quantifying foraging activity or
ingress/egress patterns [47,49,54,109].

Air composition sensors are used in 10 studies, which represents roughly 7%. While
potentially valuable for correlating gas levels with colony metabolism or health, their cost
and limited interpretability may explain the relatively low adoption [76,88,96,133].

Finally, motion/orientation sensors are the least utilized, appearing in just 6 stud-
ies—approximately 4% of the total. Their use is typically limited to detecting external
disturbances such as hive displacement due to wind, physical impact, or theft. As these
events are relatively rare or peripheral to core hive monitoring objectives, such sensors are
less commonly integrated into smart beehive systems [16,31].

It is worth noting that the average smart hive study employs multiple sensor types
to gain a more holistic view of the colony. In our dataset, systems used on average about
1.7 distinct sensor modalities each. As shown in Figure 11, about 55% of studies (74 out
of 135) used exactly one sensor type—often these were single-modality systems such as
purely acoustic or image monitoring setups. In contrast, approximately 45% of the studies
employed a combination of two or more sensor types.

3.2.2. Analytical Techniques and Algorithm Performance

After acquisition, sensor data must be processed and interpreted. This subsection
summarizes the analytical methods and machine-learning algorithms used in smart beehive
research, highlighting adoption trends and exemplary performance metrics.

A significant portion (26%) of studies integrated two sensor types, while 13% used
three distinct modalities. Only a small fraction (6%) of projects incorporated four sensor
types in a single system like [25,27,109]. This multi-sensor approach reflects the principle
of sensor fusion: by combining complementary data sources, researchers can cross-validate
findings and detect complex colony conditions that may not be evident through a single
modality alone.

However, adding more sensors inevitably increases system complexity, cost, and
power requirements—likely explaining why very few projects go beyond three or four
sensing modalities.

The intelligence in smart beehive systems comes from the data analysis algorithms that
process sensor inputs into meaningful predictions, detections, or decisions. The reviewed
studies span a broad spectrum of analytical approaches, from simple statistical thresholding
to cutting-edge deep learning models. Figure 12 shows the distribution of major classes
of Al/analysis methods used across the 135 studies (many studies employ more than one
type of analysis, so counts are overlapping).
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Figure 11. Distribution of smart hive studies by number of distinct sensor types used.
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Figure 12. Frequency of various data analysis and machine learning method categories in the literature.

Deep learning and neural networks have become the most widely used analytical ap-
proach, with 44 studies accounting for about 33% of the corpus employing such techniques.
This category includes the use of convolutional neural networks (CNNs) for image classifi-
cation (e.g., identifying pests or classifying bee species/health from images) [58,87], as well
as other neural network architectures for analyzing audio spectrograms or multivariate sen-
sor time-series [98]. The prevalence of deep learning indicates that many researchers have
started leveraging large datasets and powerful computing to improve detection accuracy
in complex tasks like image-based mite detection or audio-based behavior classification.
Indeed, deep learning often outperforms classical methods given sufficient data, which
aligns with its adoption in about one-third of the studies.

Almost equally common are feature extraction and signal processing techniques,
recorded in 42 studies, representing approximately 31% of the total. This category repre-
sents the foundational step in many analyses, for example, calculating the Fourier transform
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of audio to obtain frequency features [59] or performing image preprocessing and segmenta-
tion to isolate regions of interest (like bee or mite shapes in an image) [83]. Such techniques
often precede other analyses and are pervasive as a component of the methodology, hence
their high count.

Basic statistical and time-series analysis methods were employed in 41 studies, ac-
counting for around 30%. These include approaches like correlation analysis [122], ARIMA
models for time-series forecasting of hive parameters [121], or simple regression mod-
els [86]. Many papers rely on statistical analysis to interpret trends (for example, to see
daily patterns in weight or temperature) or to set adaptive thresholds (like control charts
for abnormal sensor readings). The substantial usage of statistical methods reflects that
not all smart hive research relies on complex Al—sometimes straightforward statistical
modeling suffices to derive insights from sensor data [80,126].

Turning to classical machine learning, supervised ML techniques appear in 25 studies,
making up roughly 18% of the corpus. These methods include algorithms such as support
vector machines, random forests, k-nearest neighbors, or naive Bayes classifiers. They have
been applied, for instance, to classify sound patterns (using features like Mel-frequency
cepstral coefficients from audio) [53], to distinguish normal vs. abnormal hive states [84],
or to predict outcomes like swarm occurrence based on multivariate sensor inputs [13,14].
While classical ML is less dominant than deep learning in recent literature, it remains
relevant, especially for moderate-sized datasets or where model interpretability is valued.

Applications of computer vision and image analysis techniques were noted in
22 studies, corresponding to approximately 16%. This category overlaps partially with deep
learning because many vision tasks now use CNNs; however, it also covers conventional
image processing (background subtraction, contour detection, etc.) and classical vision
algorithms. The presence of computer vision methods reflects the significant subset of
works dealing with camera data—counting bees at the entrance [10], detecting mite specks
on bees [106], tracking bee motion in video [46], etc. Some studies combined traditional
vision algorithms with newer ones (e.g., using feature detectors alongside CNNs to improve
robustness [77]).

We also observed rule-based methods in 17 studies, which amounts to about 13% of
the total. These are systems using predefined rules or logic, such as if-then rules triggered
by sensor thresholds or expert system approaches. They tend to appear in early or simpler
systems, for example, a system that sends an alert if weight drops by more than X in a
day (indicating a swarm) or if temperature falls outside a band [3,34]. While conceptually
straightforward and easy to implement, pure rule-based systems are less adaptive and may
not handle complex patterns, which is likely why their relative usage has diminished over
time in favor of learning-based methods.

A smaller portion of studies applied unsupervised learning or anomaly detection
techniques, with 14 studies representing around 10%. These include clustering algorithms
to group similar hive conditions, or outlier detection methods to flag unusual sensor
patterns without pre-labeled examples. Such approaches are valuable when trying to
detect novel or unexpected events (for instance, an unknown type of anomaly in hive
sound or climate that was not specifically trained for) [15,124]. However, unsupervised
methods require careful interpretation and have seen limited use, often complementing
other analyses rather than being standalone solutions.

A smaller subset of studies employed other, less common analytical strategies. These
include domain-specific methods, data fusion, ensemble methods, and fuzzy logic systems,
collectively appearing in only a handful of cases. Such approaches often aim to integrate
multiple data sources or model outputs, or to handle uncertainty through rule-based
reasoning. While conceptually valuable—particularly for combining sensor modalities or
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managing ambiguity in biological systems—their limited presence likely reflects practical
constraints such as small datasets, system complexity, or the dominance of more scalable
data-driven techniques in the field [6,78,88,91,139].

To understand the progression of analytical approaches in smart beehive research,
Figure 13 displays the distribution of data analysis methods across three distinct periods:
2015-2018, 2019-2022, and 2023-2025. Table 4 complements this by summarizing the overall
adoption rate of analytical techniques, including the period prior to 2015.
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Figure 13. Temporal evolution of key data analysis methods used in smart beehive studies.

Table 4. Adoption of analytical methods across publication periods.

Publication Period Total Publications Used Analytical Methods % with Methods

Before 2015 2 0 0.0%

2015-2018 16 11 68.8%
2019-2022 32 26 81.2%
2023-2025 85 81 95.3%

Before 2015, no studies employed analytical methods, reflecting the field’s early focus
on hardware prototyping and sensor integration rather than data interpretation.

Between 2015 and 2018, 68.8% of studies utilized at least one analytical technique.
This period was marked by methodological diversity rather than dominance, with var-
ious approaches each appearing in only a few studies. These early adopters explored a
broad range of techniques, indicating a formative stage of experimentation without clear
methodological convergence.

In the 2019-2022 period, the use of analytics increased to 81.2% of studies. Deep
Learning and Neural Networks emerged as the most frequently used method, featur-
ing in 12 studies—quadrupling its earlier usage. Statistical and Time Series Analysis
and Feature Extraction and Signal Processing also gained traction, used in 9 and 7 stud-
ies, respectively. This indicates a shift toward more robust modeling strategies, par-
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ticularly suited for capturing temporal patterns and supporting health diagnostics or
forecasting applications.

By 2023-2025, analytical methods were nearly universal, applied in 95.3% of studies.
Feature Extraction and Signal Processing led with 31 studies, followed closely by Deep
Learning and Neural Networks (29) and Statistical and Time Series Analysis (28). Notably,
Computer Vision and Imaging methods rose sharply to 20 studies, reflecting increased
emphasis on visual behavior tracking and swarm detection. Meanwhile, Classical ML
(Supervised) maintained stable adoption (16 studies), suggesting it is being complemented
or gradually supplanted by more advanced architectures. This period marks the transition
toward integrated, multimodal, and predictive systems in smart apiculture.

Together, these trends highlight the maturation of smart beehive research—from early-
stage experimentation to a data-driven discipline where neural networks, signal processing,
and vision-based analytics play a central role in colony monitoring and decision-making.

3.2.3. Comparative Assessment of Sensors and Algorithms

We synthesized quantitative comparisons of commonly used sensors and machine
learning approaches. Tables 5 and 6 summarize representative sensor characteristics (accu-
racy and approximate cost) and published performance metrics for exemplary algorithms.

Table 5. Representative sensor types used in smart beehive studies, including typical accuracy and
approximate cost.

Sensor Category

Example Device/Modality Typical Accuracy Approx. Cost *

Temperature (internal
or external)

DS18B20 digital probe +05°C $2-5 per sensor

Weight/load sensing  Four strain-gauge load cells with 0.1 kg (approx. 0.02% full scale)  $20-30 for four sensors
HX711 ADC
Acoustic/vibration Electret microphone (audio sam- Frequency response 20 Hz-20 kHz;  $5-10 per sensor
pling for soundscape) no intrinsic accuracy but sensitiv-
ity of —44dB
Imaging Raspberry Pi camera V2 (8 MP) 1080p resolution; shutter speeds $25-35 per camera
or USB webcam down to 30 ps
Air composition MQ-135 CO; sensor or Figaro +(100 ppm + 5% of reading) for $10-20 per sensor
TGS series CO; concentration
Bee activity counters  Infrared gate or RFID tag Counting accuracy 90-95% (de- $15-25 per channel

pendent on traffic)

? Retail prices in USD, as of 2025.

Table 6. Reported performance metrics for exemplar smart-beehive algorithms. Metrics correspond
to the best models reported in the cited studies.

Application Task

Reported Performance

Queen absence/presence detection =~ Achieved >97% accuracy using MFCC features in int16; 93% with STFT in

(microclimate or audio)

int32 [95]; Microclimate dataset: KNIN, MLP, SVM: 100% accuracy; Bioacustic
dataset: MLP: 98.2% accuracy [93]; CNNs (e.g., ResNet-50) achieved up to 99%
accuracy [91].

Drone vs. worker bee
classification (audio)

99.88% accuracy using Random Forest and 99.68% using KNN [53]; MU-
SIC + NN3 + T*: 99.97%, GTCC + NN3 + T*: 99.94%, Burg/MFCC + NN4 + T*:
>99.85% [61]; Burg method (parametric PSC): Accuracy = 95.9%, Blackman-Tukey
method: Accuracy = 94.79% [71].
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Table 6. Cont.

Application Task

Reported Performance

Swarm prediction/weight forecasting  Best LSTM performance was achieved with a 2-h prediction window, using a

4-hour input window, where RMSE ranged from 0.042 °C to 0.217 °C across
hives [113]; Vector Error Correction Model (VEC) outperformed other models in
most cases, showing: 1-day ahead MAEs: Temperature: 0.6-2.4 °C, Humidity:
2.4-10.9%, Weight: 63-178 g (3-day ahead predictions remained within similar
error margins.) [120]; All model types (ANN, CNN, LSTM, ARIMA) were able
to predict short-term and long-term trends of the

three variables [121].

Bee counting in images

This study used a dataset of 2300 annotated images and 7200 frames, training
YOLOVS to detect bees with high accuracy and robustness under variable
lighting. The best model achieved a mean Average Precision (mAP@0.5) of
0.948, an Fl-score of 0.91, and precision of 1.00 at a confidence threshold of
0.838. [56]; Best pipeline: YOLOv8m + OC-SORT + Box Method, achieving
F1-in = 91.49%, F1-out = 89.08%, and FPS = 21.99 [57].

Mite detection on bee images Bee detection had F1 ~ 0.8 and precision up to 1.0, while Varroa detection

showed TPR = 0.94, TNR = 0.92, F1 ~ 0.8, and precision ~ 0.7. Camera resolu-
tion strongly impacted detection effectiveness—5 MP required for reliable re-
sults, [77]; The authors developed and validated a deep learning model (Faster
R-CNN + ResNet-FPN backbone): mAP (mean Average Precision): 0.907, mAR
(mean Average Recall): 0.967. These scores were reached using ResNet50-
FPN, confidence threshold of 0.5, refinement, and DeblurGAN [87]; YOLOv5s
achieved best Varroa mite detection: mAP@0.5 = 0.974, Precision = 0.962,
Recall = 0.967. YOLOvb5n was fastest: 4.5ms/image [99].

Activity anomaly
detection (multimodal)

Achieved 99.7% accuracy and 87% F1 score on swarm detection using AE
trained on spectrograms. Pre-swarming detection was more difficult: AE
reached only 60% accuracy, 22-24% F1, vs. 76.4% accuracy with RF [66]; The
fuzzy logic model achieved 98% accuracy, 100% precision, 97% recall, and 98%
F1-score in colony state detection. It successfully identified events like swarm-
ing, colony death, and temperature anomalies based solely on hive temperature
profiles [78]; Robust regression had R? ~ 0.95-0.997, and alarms could be trig-
gered when observed values fall outside prediction intervals [86].

3.3. Meta-Analysis of Publications

An interesting question is how the choice of sensor modalities correlates with the
research goal of a study. Different application domains might favor certain sensors. To
explore this, we present several heatmaps and discuss the patterns they reveal.

3.3.1. Sensor Usage by Research Objectives

Figure 14 shows the co-occurrence of sensor types with each main goal category,
highlighting patterns of association between sensing modalities and research objectives.

Several clear patterns can be observed in Figure 14: Behavior Detection studies heavily
rely on imaging and acoustic sensors. This category includes the highest concentration of
works utilizing cameras or visual tracking, along with a strong presence of studies using
acoustic sensing. This aligns with expectations—analyzing bee behaviors such as foraging
or in-hive activity often depends on direct observation through visual or auditory cues.

Health Assessment studies make substantial use of acoustic and imaging sensors,
as many health diagnoses involve detecting anomalies in either sound—such as changes
in buzzing from sick colonies—or visual patterns, like images of bees or brood used to
identify mites or disease symptoms. These studies also frequently incorporate environ-
mental sensors, since temperature shifts may signal brood issues or colony decline, and
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certain diseases can manifest through subtle changes in microclimate. A small subset of
health-focused research has explored the use of air composition sensors to detect chemical
markers of illness or elevated CO, resulting from poor ventilation in weakened hives.
On the other hand, structural sensors such as those measuring hive weight appear less
commonly in this context, as weight is generally more associated with food reserves than
with disease—although significant weight loss can still indicate potential problems. Overall,
health-monitoring systems tend to be multimodal, designed to detect a broad spectrum of
physiological and behavioral symptoms.
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Figure 14. Heatmap showing the usage frequency of each sensor modality within each main goal
category of studies.

Monitoring studies, as expected, prioritize the use of environmental and hive structural
sensors. These general-purpose platforms often focus on recording vital hive parameters
such as internal and external temperature and humidity, air pressure, wind speed, and
hive weight. Their goal is usually to provide a comprehensive overview of hive status by
capturing key physical indicators. Some studies also incorporate acoustic sensors to detect
sound-related anomalies, such as sudden silence following colony collapse or excessive
noise indicating disturbance.

Prediction and Forecasting studies frequently rely on environmental data, along with
a notable presence of structural and acoustic inputs. For example, models predicting
honey yield often use weather conditions and historical weight trends, while forecasts of
swarming behavior might incorporate temperature and sound cues. The strong emphasis
on environmental parameters is logical, given that many colony events—like nectar flow or
swarm triggers—are closely tied to seasonal and weather-related patterns.

The remaining categories—Optimization and Decision Support, System and IoT De-
velopment, and Threat Detection—exhibit more specific sensor usage patterns, reflecting
their narrower focus or earlier stage of maturity. Optimization-focused studies, although
limited in number, typically employ environmental sensors to support yield improvement
or management recommendations. System development papers consistently incorpo-
rate environmental, and frequently also structural and acoustic, sensors—suggesting that
a standard sensing suite (e.g., temperature, humidity, weight, sound) is considered es-
sential when building general-purpose platforms. In contrast, imaging sensors are less
common in this group due to power and complexity constraints. Meanwhile, threat de-
tection studies rely almost exclusively on imaging, sometimes complemented by acoustic
sensing, to visually identify external aggressors such as hornets. The absence of environ-
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mental and weight sensors in these works highlights the highly targeted nature of this
application domain.

These correlations underscore that the selection of sensors in a smart beehive project
is closely aligned with its objectives. If the goal is to monitor or predict general hive status,
environmental and weight sensors are the go-to choices for tracking broad trends. For
researchers and engineers, this insight can guide the design of future systems: depending
on the primary application, one can prioritize certain sensor modalities to maximize the
likelihood of success.

3.3.2. Sensor Co-Occurrence Patterns

The sensor co-occurrence heatmap shown in Figure 15 provides a quantitative
overview of how different sensor modalities are jointly used in smart beehive systems.

Environmental/Weather Sensors n 9 31 26 4 8

Air Composition Sensors- 9 10 3 3 3] 2

Hive Structural Sensors = 31 3 14 1 4
40

Acoustic/Vibration Sensors - 26 3 14 2 3
=30

Motion/Orientation Sensors - 4 3 1 2 6 0
-20

Bee Activity/Counter Sensors- 8 2 4 3 0 13
-10

Imaging Sensors- 1

o
()]
-
w
Imaging Sensors H w - o IS 1) 5
'
o

Environmental/Weather Sensors -
Air Composition Sensors -

Hive Structural Sensors -
Acoustic/Vibration Sensors -
Motion/Orientation Sensors -

Bee Activity/Counter Sensors -

Figure 15. Sensor modality co-occurrence matrix across smart beehive studies.

The most prominent co-occurrence is observed between environmental and hive
structural sensors. This pairing reflects a foundational design in beekeeping technology,
where ambient conditions such as temperature and humidity are monitored in parallel
with hive weight to assess colony growth, honey production, or seasonal changes. In many
cases, the weight sensor serves as a proxy for biomass or food reserves, while temperature
provides thermal context—although the two data streams are often analyzed independently.

Another commonly observed combination involves environmental sensors and acous-
tic/vibration sensors. These systems typically use microphones or accelerometers to
monitor hive activity, agitation, or swarming behavior, while simultaneously recording
internal/external temperature. However, the data are frequently interpreted in isolation:
acoustic features are used for classification or anomaly detection, whereas temperature
readings are either passively logged or used to validate overall hive conditions.

A moderately common pattern includes the co-occurrence of hive structural and
acoustic/vibration sensors, a setup that theoretically enables the study of behavioral states
in relation to hive mass or movement. Similarly, the combination of environmental sensors
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with imaging systems is often found in platforms that monitor entrance traffic or thermal
vision, though true fusion of visual and thermal features remains rare.

Other co-occurrences—such as those involving bee activity counters, motion/orientation
sensors, or air composition sensors—are less frequently encountered and tend to serve
more specialized roles. For instance, gas sensors like CO, or O, are typically used to
investigate hive respiration or ventilation, while accelerometers may be included for struc-
tural monitoring or theft detection. These modalities are rarely integrated with others in a
unified analytical framework, although there are notable exceptions. Newton et al. [96],
for example, combine CO,, temperature, vibration, and weight data to infer colony be-
havior during overwintering. Similarly, Robustillo et al. [111] apply vector autoregressive
models to jointly analyze temperature, humidity, weight, and meteorological variables for
predicting internal hive conditions. Henry et al. [1] also examine variability in acoustic and
environmental data to assess colony stress under electromagnetic exposure, suggesting
potential for integrated interpretations. In another example, the b+WSN platform [14]
incorporates gas, temperature, and weight sensors into a rule-based decision model that
triggers alerts at the hive level.

A key insight drawn from the literature is that while sensor integration at the hardware
level is common, true multimodal analysis or data fusion remains largely absent. Even
in more complex systems that include multiple sensor types, data from each source are
typically processed in isolation. As such, the co-occurrence heatmap primarily reflects
design choices and hardware configurations rather than analytical integration.

3.3.3. Sensor-Model Co-Occurrence Patterns

The sensor-model co-occurrence heatmap, shown in Figure 16, reveals several domi-
nant patterns in the design of smart beehive systems, each reflecting how particular sensor
modalities are suited to specific types of analysis as dictated by the intended application goals.
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Figure 16. Heatmap showing the co-occurrence between sensor modalities and machine learning
(ML) model categories across surveyed smart-beehive systems.

One of the strongest associations is between Acoustic/Vibration Sensors and a diverse
range of analytical methods, including Feature Extraction and Signal Processing, Statistical
and Time Series Analysis, Classical ML (Supervised), and Deep Learning and Neural
Networks. This pattern reflects a substantial body of research focused on monitoring
colony behavior, detecting stress responses, and identifying anomalies through audio-
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based cues. These systems typically rely on time—frequency representations of hive sound,
such as spectrograms, which are then processed using machine learning or deep learning
models. The focus in these works is often on non-invasive, real-time diagnostics aimed at
swarm prediction or general hive health assessment.

Environmental/Weather Sensors are frequently paired with Statistical and Time Series
Analysis. These studies generally seek to model colony microclimate, identify seasonal
or daily patterns, and detect deviations from thermal norms that may indicate brood
disturbance or weakening colonies. Given the scalar and temporal nature of the data, statis-
tical methods such as trend analysis or control charts are both practical and interpretable,
especially for low-cost, field-deployable systems.

Imaging Sensors show strong co-occurrence with Deep Learning and Neural Networks
and Computer Vision and Imaging. These combinations are common in studies targeting
automation of visual tasks such as bee counting, motion tracking, or disease detection
based on visual symptoms. Convolutional neural networks (CNNs) dominate this space
due to their ability to learn hierarchical visual features. Such systems are typically high-
precision and are designed for monitoring hive entrance activity, external threats, or internal
brood conditions.

Hive Structural Sensors, such as those used to measure weight, are most often linked
with Statistical and Time Series Analysis. These systems often aim to infer honey production
rates, colony strength, or feeding patterns by analyzing trends in weight data. Because
weight is a cumulative and slowly varying signal, it naturally lends itself to forecasting
models such as regression or ARIMA.

Other sensors—including Air Composition Sensors, Motion/Orientation Sensors, and
Bee Activity/Counter Sensors—appear much less frequently and are mostly found in
exploratory or proof-of-concept studies. Their limited analytical pairing reflects either the
novelty of their application or the challenges of integrating their outputs into broader data
pipelines. While some of these modalities show promise, their adoption remains sparse.

Overall, the co-occurrence analysis reveals that sensor selection and model choice
are closely aligned with the nature of the data and the functional goals of the system.
Acoustic and imaging data, being high-dimensional and temporally dynamic, are typically
matched with learning-based models capable of complex pattern recognition. In contrast,
environmental and structural data, which are scalar and trend-oriented, are more often
analyzed using statistical or threshold-based techniques.

3.3.4. Sensor—Communication Co-Occurrence Patterns

Understanding how different sensor modalities are implemented and transmitted is
crucial for designing efficient and scalable smart beehive systems. Various sensor types
require distinct communication strategies depending on factors such as data rate, energy
consumption, and deployment context. Figure 17 provides an overview of the co-occurrence
patterns between sensor categories and communication technologies used in the reviewed
literature. This visual summary helps illustrate which sensor types are commonly paired
with wired, short-range, or long-range wireless communication, highlighting both standard
practices and emerging trends in smart hive design.

Environmental / Weather Sensors, Hive Structural Sensors, and Acoustic/Vibration
Sensors are most frequently paired with Short-Range Wireless and Long-Range Wireless
communication technologies. This common pairing reflects their central role in smart
beehive systems, where real-time or continuous data—such as temperature, humidity, hive
weight, or sound—must be transmitted efficiently from remote or outdoor environments.
The low data rate and power requirements of these sensors make them particularly suitable
for low-energy wireless protocols. As a result, they are widely adopted in both experi-
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mental setups and field-deployable platforms, offering a balance between communication
efficiency, scalability, and monitoring reliability.

Imaging Sensors are more selectively paired, predominantly with Short-Range Wire-
less communication. This likely reflects their high data bandwidth requirements, which are
better handled with nearby base stations or local edge processing units. These sensors often
appear in vision-based systems focused on tasks such as bee counting, foraging activity
monitoring, or intrusion detection at the hive entrance.

Across all sensor types, Wired Communication is used infrequently, primarily in early-
stage prototypes or laboratory settings where simplicity and data stability are prioritized
over deployment flexibility. Most modern implementations prefer wireless connectivity,
reinforcing the field’s emphasis on modularity, scalability, and field-readiness.

In summary, the communication strategy in smart beehive systems is closely aligned
with sensor function, data rate requirements, and deployment context. Foundational
sensors like environmental and structural ones appear across a wide range of systems
and communication protocols, while high-bandwidth or specialized sensors show more
constrained and deliberate communication pairings.
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Figure 17. Co-occurrence between sensor categories and communication types across reviewed smart
beehive systems.

3.4. Practical and Technical Limitations

A cross-study analysis of recent literature reveals a variety of practical and technical
limitations that hinder the deployment, reliability, and scalability of smart beehive moni-
toring systems. These challenges arise across multiple layers—from data collection and
algorithm design to hardware constraints and environmental conditions.

One major limitation is the availability and quality of data. Many studies report small
dataset sizes and a lack of environmental diversity, making models vulnerable to overfitting
and poor generalization. Edwards-Murphy et al. [14] and Braga et al. [79] highlight
issues such as the absence of representative samples for different hive states and the
geographic confinement of data collection. Zgank [52] and Campell et al. [124] emphasize
that insufficient variability in training data can severely impact model performance—for
instance, by causing convergence to trivial identity matrices in swarm detection methods
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based on matrix factorization. In addition, Gil-Lebrero et al. [8] point out that the inherent
biological variability in beehive activity introduces further inconsistency into datasets.

On the algorithmic side, many models rely on computationally intensive methods
such as deep learning or spectral decomposition, which often exceed the capabilities of
resource-constrained edge devices used in field settings. Kulyukin et al. [44] note that
deep models demand significant processing power, limiting their real-time deployment
potential. Campell et al. [124] raise additional concerns about convergence behavior in
spectral methods, while Kulyukin et al. [121] describe how sensor faults and environmen-
tal disruptions can create discontinuities in time-series data, degrading the reliability of
forecasting models. Cecchi et al. [27] also report performance limitations in vision-based
systems due to segmentation errors.

Hardware, energy, and communication constraints present further obstacles. Solar-
powered hives often fail to harvest sufficient energy for continuous monitoring, as observed
by Edwards-Murphy et al. [22]. Scalability is another concern—Kviesis et al. [37] report that
their system could securely support only ten IoT nodes. High costs and lack of flexibility
in commercial platforms limit their adaptability in field conditions, as pointed out by
Hamza et al. [39]. Other authors [28,135] note that general-purpose computing platforms
are often unsuitable due to their energy inefficiency and lack of durability. Multiple
studies [13,22] independently report the inadequacy of solar energy harvesting, indicating
this is a widespread challenge.

Environmental sensitivity adds another layer of complexity. Sensor placement within
the hive can significantly affect measurement accuracy—Catania and Vallone [29] demon-
strate that temperature readings vary depending on probe location. Lighting conditions,
occlusion, and hive structure all affect the reliability of visual data [2,27], illustrating how
fragile sensor performance can be in uncontrolled environments.

Lastly, the maturity of many systems remains limited. Numerous solutions are still in
early-stage or prototype phases. Kulyukin and Mukherjee [44] provide only preliminary
evaluations of their models, and Szczurek et al. [76] explicitly call for further validation
of gas-based detection techniques. The absence of long-term, multi-seasonal field testing
makes it difficult to assess whether these systems can maintain reliability under natural
variability and operational stress.

Taken together, these limitations reflect the growing pains of a research field still
transitioning from proof-of-concept studies to practical, field-ready technologies. Address-
ing them will require robust datasets, computational efficiency, resilient hardware, and
sustained validation efforts.

4. Publicly-Available Datasets for Smart-Beehive Research

Effective machine learning models for monitoring honey bee colonies rely on access to
structured, labeled datasets that reflect the complexity of hive dynamics across multiple
sensing modalities. Accordingly, to address our final research question (RQ5) on data
resources, we survey the publicly available datasets that have been used to support smart
beehive studies. Over the past several years, a number of high-quality public datasets
have emerged, capturing audio signals, visual observations, and environmental telemetry
relevant to colony health and behavior. These resources support tasks such as swarm
prediction, parasite detection, behavior classification, and vitality forecasting. A summary
of the most prominent datasets, categorized by modality and typical machine learning
application, is provided in Table 7.
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Table 7. Summary of publicly available smart-beehive datasets by modality and ML application.

Dataset Title Modality Typical ML Purpose
To bge or not to bee: An annotated dataset for Acoustic Binary sound classification (Bee vs. noBee)
beehive sound recognition [141]
Audio-Based identification of Beehive states: Acoustic Multi-class classification of
The dataset [142] calm/pre-swarm/swarm hive states
Beehive Sounds [143] Acoustic State classification (healjfhy, distressed,
empty); anomaly detection
Dataset for honey bee audio detection [18] Acoustic Species classification (bee vs. drone) using
spectrograms
Queenless honeybee acoustic patterns [144] Acoustic Queen state detection
Labeled dataset for bee detection and direction . . . .
o : . , Object detection, pose estimation, and
estimation on beehive landing Visual . . .
behavior tracking from video
boards [145]
Dataset for varroa mite detection on sticky Visual Varroa mite detection
boards [146]
. Parasite detection (Varroa destructor); object
VarroaDataset [17] Visual detection with bounding boxes
VnPollenBee Dataset [147] Visual Pollen-bee classification
Honey Bee Annotated Images [148] Visual Bee detection and classification
Research project on field data collection for . Colony behavior/risk modeling;
. Multimodal . . .
honey bee colony model evaluation [149] multi-source integration
Bee colony remote monitoring based on IoT Environmental Colony state monitoring using temperature,
using ESP-NOW protocol [37] weight, battery data for predictive modeling
Winter carbon dioxide measurements in UK Environmental Winter vitality prediction
honeybee hives 2022,/2023 [150] yP
NASA POWER [151] Environmental External environmental feature

augmentation for beehive activity modeling

4.1. Acoustic Datasets

Acoustic monitoring offers a non-invasive method for assessing beehive conditions,
providing valuable insights into colony behavior and health.

The “To bee or not to bee: An annotated dataset for beehive sound recognition”
dataset, created by Inés Nolasco and Emmanouil Benetos from Queen Mary University
of London [141], focuses on the automatic recognition of beehive sounds. This dataset
is composed of 78 recordings, totaling approximately 12 h of audio, sourced from the
Open Source Beehive (OSBH) project and the NU-Hive project. The audio segments are
primarily labeled into two classes: “Bee” (pure beehive sounds) and “noBee” (periods
where external sounds are perceived, superimposed on bee sounds). Annotation was
performed by volunteers using Sonic Visualiser, leveraging both auditory perception and
visual analysis of log-mel frequency spectrums. This dataset is explicitly designed for
investigating machine learning approaches to beehive sound recognition and evaluating
developed methods. A related dataset, “Audio-Based identification of Beehive states: The
dataset” created by Ines Nolasco, Alessandro Terenzi, Stefania Cecchi, Simone Orcioni,
Helen L. Bear, and Emmanouil Benetos [142], also contains audio files and a state_labels.csv
for the audio-based identification of beehive states. Another publicly available beehive
audio dataset contains 10,000 audio files, each 8.203125 s long, sampled at 8000 Hz in
WAV format, identified by date, time, and hive ID [152]. Another relevant source is the
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“Smart bee colony monitor: Clips of beehive sounds” dataset published on Kaggle by
Anna Jyang [143]. It includes multiple recordings of beehive audio categorized by labels
such as “healthy”, “distressed”, and “empty”. The dataset serves as a foundation for
machine learning applications focused on recognizing bee colony states through sound
analysis, and complements existing audio datasets in offering class-labeled audio in various
beehive conditions.

The “Dataset for honey bee audio detection,” by Pawel Biernacki from the University
of Science and Technology Wroclaw [18], provides 10,000 one-second recordings of bees
and 1700 one-second recordings of drones. All recordings are in WAV format without
compression, sampled at 44.1 kHz. The specific labeling of “bees” and “drones” makes this
dataset directly applicable for developing and evaluating ML models for audio detection
and classification of different honey bee types.

The “Queenless honeybee acoustic patterns” dataset, contributed by Antonio Robles-
Guerrero [144], contains acoustic patterns from five Carniola honeybee colonies in Zacate-
cas, Mexico. The dataset includes recordings from healthy queenright colonies (with huge
and moderate populations) and queenless colonies (with low populations), established
by removing queens from two colonies. Each sample is 30 s long, recorded at a sampling
frequency of 4 kHz with 12-bit resolution. The explicit hypothesis is that the queenless
state can be identified by comparing acoustic patterns with healthy colonies using machine
learning techniques and feature extraction methodologies.

4.2. Visual Datasets

Visual data provides direct observational insights into bee activity, health, and interac-
tions within the hive environment.

The “Labeled dataset for bee detection and direction estimation on beehive landing
boards,” contributed by Tomyslav Sledevic [145], includes several visual datasets:

e A detection dataset with 7200 frames (1920 x 1080 resolution) for bee detection/
segmentation.

* A segmentation dataset with 2300 cropped bee images labeled with a triangle shape
for direction vector estimation.

* A pose directory containing 400 frames from eight beehive entrances, where annota-
tions include two points (head and stinger, or front and back if partially visible) for
bee direction estimation.

*  Aramp detection dataset with 156 images, annotated with bounding box coordinates
and four keypoints.

e  Tracking and behavior datasets consist of annotated MP4 files with bee tracks during
foraging, defense, fanning, and washboarding activities within the entrance zone.

All annotations are in YOLO format, supporting the development of ML models for
object detection, segmentation, pose estimation, tracking, and classification of specific
bee behaviors.

The “Dataset for varroa mite detection on sticky boards,” created by Jose Divasén
et al. [146], provides 64 high-resolution images (8064 x 6048) of sticky boards with Varroa
mites, along with their labels. The dataset also includes a version of these images after
deblurGAN techniques have been applied. This dataset is intended for use with deep
learning techniques to analyze Varroa mite colony infestation levels and includes predefined
training and validation splits, as well as developed deep learning models.

The “VarroaDataset” developed by Schurischuster Stefan and Martin Kampel [17],
offers high-resolution images (160 x 280 px) of honeybees, specifically focusing on the
presence of the Varroa destructor parasite. The dataset contains 13,509 samples, with ap-
proximately 3947 manually annotated as infected (class 1) and 9562 as healthy (class 0).
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It includes predefined dataset splits for training, testing, and validation. Bounding box
coordinates are provided for the annotations. This dataset is explicitly designed for detect-
ing parasites on honeybees using machine learning, particularly for image classification
and object detection tasks.

The “VnPollenBee Dataset” is specifically built for detecting pollen-bearing bees from
videos captured at hive entrances [147]. It comprises over 2000 images, manually anno-
tated, containing 1758 pollen-bearing bees and 59,068 non-pollen-bearing bees. The images
were extracted from 1920 x 1080 resolution videos recorded at 60 frames per second un-
der varying natural light conditions. Annotations were initially manual using Labelme
Annotation tools and refined with an object detection model. The dataset is pre-divided
into training, validation, and test sets (70:20:10 ratio) to facilitate comparative studies of
deep learning models for pollen bee detection. The “The Beelmage dataset: Annotated
honey bee images” dataset on Kaggle, created by Jenny Yang [148], provides a collection
of annotated bee images aimed at object detection tasks. The dataset consists of over
1000 labeled images with bounding boxes around honey bees, intended to facilitate train-
ing and evaluation of deep learning models for detection and classification tasks. It is
particularly useful for preliminary experimentation in object detection pipelines.

4.3. Environmental and Multimodal Datasets

These datasets combine various sensor measurements to provide a comprehensive
understanding of beehive dynamics and their external influences.

A bee colony monitoring system, detailed in the study “Bee colony remote monitor-
ing based on IoT using ESP-NOW protocol” collected real-time environmental data [37].
The study makes available the “Measurements for the experimental period” dataset as
supplemental information. This dataset includes battery discharge rates, temperature
measurements (inside and outside the hive), and weight measurements of bee colonies.
This data, collected from five colonies in Latvia from June to August 2022, was used to
evaluate the efficiency of the lIoT system and to analyze colony weight dynamics for active
foraging periods, as well as in-hive temperature for colony state assessment. Such data is
fundamental for developing ML models for predictive monitoring of colony health, activity
levels, and resource availability.

The “Research project on field data collection for honey bee colony model evaluation—
datasets” (also known as the MUSTB field data collection), created by Dupont Yoko L. et
al. [149], provides a comprehensive set of data for evaluating honey bee colony models [149].
It includes various data modalities:

¢  Environmental/Physiological data, such as hive weight obtained from automatic
logging by a hive scale, and adult bee strength from weight assessment of combs.

*  Visual data, including data on brood development and food provision from image
analysis of combs, and forager activity from automatic video recordings and image
analysis by a bee counter.

¢ Observational and management logs, detailing colony management actions (e.g., in-
put/output of materials, queen loss, swarming, clinical signs) and observations of
honey bee waggle dances (orientation and direction).

*  Chemical and biological analysis results, including laboratory analyses of pollen,
pesticide residues, and parasites/pathogens.

*  Geographical information for sites and polygons, including UTM coordinates.

The data is reported according to a specific data model and stored in a relational database,
providing a rich, multimodal resource for developing and evaluating diverse machine learning
models related to bee colony health, behavior, and environmental interactions.
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The “Winter carbon dioxide measurements in UK honeybee hives 2022/2023" dataset,
contributed by Michael Newton [150], specifically reports carbon dioxide measurements
in wintering beehives in the UK. This data is also compared with hive scale and vibration
sensor measurements. While not explicitly detailing ML model use within the source, CO,
levels, hive mass, and vibration patterns are crucial environmental indicators that can
be used to train and evaluate ML models for assessing colony vitality, wintering success,
and overall health without manual inspection. This data supports “Giving Beekeeping
Guidance by computational-assisted decision making,” implying its relevance for ML-
driven decision support systems.

Although not directly a beehive-specific dataset, NASA POWER (Prediction Of World-
wide Energy Resources) provides publicly accessible solar and meteorological datasets [151].
The “Agroclimatology Archive” specifically targets agricultural needs and provides param-
eters formatted for input to crop models. While it does not contain bee-specific labels, this
external environmental data, such as temperature, solar radiation, and other meteorological
parameters, is highly relevant for smart-beehive research. It can be integrated into ML
models to contextualize bee behavior, foraging patterns, and colony health responses to
broader environmental conditions.

4.4. Summary

In summary, a growing number of publicly available datasets are instrumental in
advancing smart-beehive research. These datasets offer diverse data modalities, including
acoustic signals for sound recognition and queen state detection, visual imagery for bee and
parasite detection, and a range of environmental and physiological measurements for com-
prehensive colony monitoring. The detailed labeling and structured organization of these
datasets directly support the development, training, and evaluation of various machine
learning models for tasks such as classification, object detection, pose estimation, tracking,
and behavioral analysis, ultimately contributing to more effective precision apiculture.

5. Discussion and Future Work

The findings from this review illustrate the remarkable progress made in integrating
sensing, communication, and Al technologies into beekeeping. However, a closer analysis
reveals a number of systematic limitations that, if addressed, could lead to significantly
more robust, scalable, and intelligent smart hive systems.

5.1. Sensor Modalities and Deployment Gaps

Environmental sensors—particularly those for temperature, humidity, and hive
weight—remain the most commonly deployed modalities due to their affordability and ease
of integration [2,4,8]. Acoustic sensors rank second and are widely used for non-invasive
detection of hive events such as queen loss or swarming [1,144,152]. These audio-based
methods have proven particularly effective for identifying critical changes in colony behavior.

However, other sensor types remain underutilized despite their potential value. Gas
sensors such as CO; and NO; sensors can offer insight into hive respiration and ven-
tilation patterns [153], while infrared imaging and tag-based bee counters can provide
information on thermal dynamics and foraging rates [141,148]. Despite their promise, few
reviewed systems integrated these additional modalities, indicating a narrow focus in
current experimental designs.

Moreover, most systems use only a single sensor modality, which limits resilience in
noisy or uncertain environments. Multimodal sensor fusion—where acoustic, environmen-
tal, and even image-based signals are combined—remains rare in practical deployments
despite its proven benefit in robustness and accuracy [3,145]. Furthermore, calibration pro-
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tocols, sensor placement standards, and long-term durability studies are seldom reported,
which impairs reproducibility.

5.2. Novel Opportunity: Signal-Layer Metrics as Passive Sensors

A promising research direction for smart beehive systems is the use of wireless com-
munication signal metrics—such as Received Signal Strength Indicator (RSSI) and Signal-
to-Noise Ratio (SNR)—as low-cost, passive sensing modalities. These metrics, inherent to
radio communication technologies like LoRaWAN, can exhibit environmental sensitivity
and offer insights without requiring dedicated physical sensors.

Recent studies have demonstrated that fluctuations in signal strength can be correlated
with changes in environmental parameters, such as soil moisture [154], occupancy and
shadowing effects [155], or spatial positioning [156]. In these applications, RSSI and SNR
patterns are interpreted using classical and machine learning techniques to infer states that
would traditionally require more expensive and power-consuming sensors.

Applied to apiculture, similar principles could be exploited. For instance, changes
in hive weight, bee clustering behavior, or humidity buildup may impact the wireless
signal propagation between nodes. This opens the door to designing low-power, low-
cost hives that leverage communication signals not just for data transmission, but also as
sensing elements. Given that many smart beehive platforms already include long-range
communication modules, signal-layer analysis could yield significant savings in hardware
complexity and power consumption.

To our knowledge, no reviewed papers apply such differential signal-based sensing
in beekeeping. However, the approach is promising due to its low power requirements,
passive nature, and ability to integrate with existing LoORaWAN deployments. This form of
“virtual sensing” could be especially valuable in constrained deployments and represents a
novel research opportunity with wide applicability. We recommend future studies examine
RSSI/SNR sensitivity to key beehive conditions, explore training ML models on such
features for anomaly detection, and benchmark their accuracy against conventional sensors.

5.3. Data Processing and Machine Learning Approaches

The review also shows a clear evolution from rule-based alert systems to ML-powered
classification and prediction. Traditional ML models like decision trees, support vector
machines, and random forests are widely adopted for swarm prediction and audio classifi-
cation tasks [6,15]. Deep learning models—including CNNs and LSTMs—are increasingly
being used for vision and time-series inference [14,16,148].

Nonetheless, several methodological shortcomings were identified. First, the majority
of models are trained on small or private datasets, reducing reproducibility and general-
izability [142,147]. Second, comparative model evaluation using standard metrics is rare,
making it difficult to benchmark performance. Finally, and most notably, very few systems
implement TinyML—machine learning designed to run on microcontrollers—for real-time
inference on edge devices.

This lack of on-device inference is a missed opportunity, particularly for remote
apiaries with limited connectivity. TinyML models can process acoustic signals, environ-
mental data, and even signal-layer features like changes in signal strength locally, enabling
real-time decisions without requiring constant uplink.

5.4. Deployment and Reproducibility Challenges

Despite their technical promise, many reviewed systems were only validated in lab-
oratory settings or over short time intervals [2,4]. Very few reported long-term, in-situ
deployments that accounted for seasonal or geographic variation [149,157]. As a result,
many systems remain proof-of-concept rather than field-ready solutions. Concrete inte-
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gration challenges reported in the literature include (i) load-cell weight scales requiring
rigid, level platforms and weatherproof housings to maintain +0.1 kg accuracy; humidity
and temperature fluctuations can drift calibration over time and necessitate periodic recal-
ibration; (ii) microcontroller and sensor enclosures suffering condensation and propolis
buildup in harsh beehive environments, leading to sensor failure; (iii) limited power bud-
gets for wireless modules—long-range radios such as LoRa require careful duty-cycling
or solar power to avoid battery depletion; and (iv) network latency and packet loss when
multiple hives share a gateway, complicating real-time anomaly detection. These examples
highlight that system engineering constraints, not just algorithmic performance, often limit
the robustness and scalability of smart hive prototypes.

Reproducibility is another critical issue. Fewer than 10% of the reviewed papers
provide access to source code or raw datasets [17,18]. Even when data is shared, it is often
poorly labeled or lacks critical metadata, preventing meaningful reuse or comparison. The
absence of benchmark datasets impedes progress and creates artificial barriers to entry for
new researchers, as well as broader scientific insights into honey bee colony dynamics.

5.5. Future Research Directions

To advance the field, we recommend the following concrete actions:

*  Design and deploy multimodal sensing platforms that combine multiple sensor types,
and communication-layer signals (RSSI, SNR) for holistic hive monitoring.

¢ Explore fluctuations in signal strength using internal vs. external LoRaWAN nodes as
a novel passive anomaly detection method.

¢ Develop lightweight, interpretable TinyML models capable of real-time inference
on embedded microcontrollers using features like sound patterns, temperature, and
RSSI fluctuations.

¢ Standardize data annotation, sharing, and benchmarking protocols through the cre-
ation of open-access, multi-season, multi-location datasets.

¢ Investigate privacy-preserving distributed learning techniques such as federated
learning to enable collaborative model training across apiaries.

*  Foster stronger collaboration with domain experts (experienced beekeepers and en-
tomologists) to ensure smart beehive solutions address practical beekeeping needs
and scientific knowledge gaps. This includes emphasizing user-friendly designs,
cost-effectiveness, and validation of technologies in real-world apiary conditions.

By addressing these gaps, the community can transition from fragmented, lab-scale
studies to robust, reproducible, and scalable smart hive systems capable of supporting
both commercial and ecological beekeeping practices, as well as advancing scientific under-
standing of honey bee colonies.

6. Conclusions

This review systematically analyzed 135 peer-reviewed papers on smart beehive sys-
tems, identifying major technological trends, challenges, and research opportunities in the
domain of precision apiculture. Environmental and acoustic sensors were found to be the
most frequently used, while visual and gas sensing remain underexplored. Communication
architectures favor short-range wireless protocols, though long-range low-power options
like LoRa and NB-IoT are increasingly adopted. Methodologically, a transition is underway
from rule-based systems to machine learning, though deep learning remains limited by
data availability and deployment complexity.

The study reveals key gaps in sensor fusion, data transparency, and longitudinal
validation. Addressing these will be crucial for the development of robust, scalable, and
reproducible smart hive platforms. Future systems must emphasize multimodal sensing,
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edge intelligence, and open science principles. By consolidating existing work and outlining
clear directions for research, this paper contributes a foundational synthesis for scientists,
engineers, and beekeepers seeking to harness technology for sustainable apiculture.

Author Contributions: Conceptualization, J.S. and T.P; methodology, ].S. and T.P; software, J.S.;
validation, T.P, J.5., PS., and L.S.; formal analysis, 1.S. and T.P; investigation, JS., TP, PS,and LS,;
resources T.P. and PS.; data curation, T.P. and ].é. ; writing—original draft preparation, T.P. and ]S. ;
visualization, T.P. and IS. ; supervision, L.S. and PS.; project administration, PS.and L.S.; funding
acquisition, T.P. and PS. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was supported by the following projects: “Fact-checking in the specialised
fields of energy and computing” project, funded by the National Recovery and Resilience Plan of
the Republic of Croatia, NPOO C1.1.1. R6-12 and by Digital Plan co-funded by the European Union
through the Interreg Italy-Croatia 2021-2027 Programme.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: During the preparation of this manuscript, the author(s) used ChatGPT 4o for
the purposes of generating graphs from tables that are originally author materials, as well as to
modify and improve the English language. The authors have reviewed and edited the output and
take full responsibility for the content of this publication.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Detailed Summary of Included Studies

This appendix provides the full table summarizing the 135 included studies. The
table lists each publication along with its deployed sensor modalities, communication
technologies, and analytical methods. In the main text we present aggregated analyses and
condensed tables for readability.
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Table A1l. Summary of included studies (N = 135), categorized by sensor modality, communication protocol, and analytical technique.

PUBLICATION

Sensor/Data Type

Communication Type

Method/Algorithm

Henry et al. [1]
Ochoa et al. [3]
Khairul et al. [4]
Zabasta et al. [5]

Komasilovs et al. [6]

Zacepins et al. [2]
Sanchez et al. [7]
Lietal. [9]

Kale et al. [10]

Gil-Lebrero et al. [8]
Kviesis et al. [11]
Rybin et al. [12]

Edwards-Murphy et al. [13]

Edwards-Murphy et al. [14]

Kridi et al. [15]

Edwards-Murphy et al. [16]

Edwards-Murphy et al. [22]

Zgank [43]

Marstaller et al. [75]

Temperature, Humidity, Microphone
Temperature, Humidity, Weight scale
Temperature, Humidity, Weight scale

Temperature, Humidity, Weight scale,
Camera

Temperature, Weight scale,
Microphone

Temperature
Temperature, Humidity
Temperature, Humidity
Camera

Temperature, Humidity, Weight scale
Temperature

Temperature, Humidity, Weight scale,
Microphone

Temperature, Humidity, CO;, O,, NO;,
Pollutant levels, Accelerometer

Temperature, Humidity, CO,, O,, NO,,
Pollutant levels, Accelerometer

Temperature

Microphone, Accelerometer, Infrared
camera, Thermal camera

Temperature, Humidity, CO,, O,, NO,,
Pollutant levels, Accelerometer

Microphone

Camera

WiFi, Ethernet
WiFi
WiFi

WiFi, GSM/GPRS, RF

WiFi, GSM/GPRS

WiFi

GSM/GPRS, ZigBee
GSM/GPRS, ZigBee

ZigBee
GSM/GPRS, ZigBee

GSM/GPRS, ZigBee

WiFi, GSM/GPRS

Fast Fourier Transform (FFT), Data aggregation techniques
(AVG, COUNT)

Custom swarming algorithm

ANOVA

Gaussian Mixture Models (GMM), Cascade classification,
Optical flow

Neural network
Wavelet transformation, Neural network

Custom temperature and humidity algorithm and CO,

Decision Trees (C4.5), Custom temperature and humidity algorithm

and CO,
k-means clustering

Hidden Markov Models (HMM), Mel-Frequency Cepstral
Coefficients (MFCC)

Neural network
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Table Al. Cont.

PUBLICATION

Sensor/Data Type

Communication Type

Method/Algorithm

Kulyukin, et al. [45]

Kulyukin, et al. [44]
Liu, et al. [23]

Tu, et al. [46]
Szczurek, et al. [76]
STRUYE, et al. [47]
Ramsey;, et al. [48]
Andrijevié et al. [109]

Voudiotis et al. [110]
Mrozek et al. [77]
Aydin et al. [24]

Robustillo et al. [111]

Hong et al. [25]

Kviesis et al. [78]
Braga et al. [79]

Temperature, Microphone

Temperature, Microphone, Camera
Temperature, Solar radiation, Wind
speed and direction, Weight scale
Camera

Gas sensor

Counter

Accelerometer

Temperature, Gas sensors (TGS serise
from Figaro Eng), Solar radiation, UV
index, IR inensity, Rain detection,
Wind speed and direction, Humidity,
Microphone, Air Quality, Counter
Camera

Camera

Temperature, Air Pressure, Gas sensors
(TGS serise from Figaro Eng),
Humidity, Weight scale

Temperature, Air Pressure, Solar
radiation, Rain detection, Wind speed
and direction, Humidity,

Pollutant levels

Temperature, Humidity, Weight scale,
Microphone, Counter

Temperature

Temperature, Dew point, Solar
radiation, Rain detection, Wind speed
and direction, Weight scale

GSM/GPRS

LoRaWAN, WiFi
GSM/GPRS
WiFi, ZigBee

WiFi

Bluetooth

k-means clustering, Non-Uniform Fast Fourier Transform(NFFT),
Short term Fourier transform (STFT), Mel-Frequency Cepstral
Coefficients (MFCC), Neural network, Support vector machine
(SVM), Logistic Regression, Random Forest

Neural network, Support vector machine (SVM), Random Forest

k-means clustering, Linear regression
ANOVA, Tukey’s test
asynchronous sequential algorithm

LSTM neural networks, Facebook Prophet, ARIMA

CNN
CNN

Vector Autoregressive (VAR), Dynamic Linear Model (DLM),
Generalized Additive Model (GAM)

fuzzy logic model (FLM)
Neural network, Random Forest, k-nearest neighbors (KNN)
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Sensor/Data Type
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Li et al. [80]

Imoize et al. [26]
Cecchi et al. [27]

Kaplan et al. [81]
Zacepins et al. [28]
Bermig et al. [49]

Braga et al. [112]
Alves et al. [82]

Ngo et al. [50]

Sevin et al. [83]

Kim et al. [84]

Catania et al. [29]
Braga et al. [113]

Schurischuster et al. [85]
Williams, et al. [51]

Zgank [52]

Rodias et al. [125]

Temperature, Humidity, Weight scale,
Microphone, Counter

Temperature, Microphone

Temperature, Humidity, CO2, Weight
scale, Microphone

Camera
Temperature, Humidity, Weight scale

Temperature, Humidity, Camera,
Counter

Temperature, Humidity, Weight scale
Camera

Temperature, Light illuminance, Rain
detection, Wind speed and direction,
Humidity, Camera

Camera

Microphone

Temperature, Wind speed and
direction, Humidity, Weight scale

Temperature, Humidity, Weight scale,
Microphone

Camera
Camera, Thermal camera

Microphone

Temperature, Humidity, GPS module,
LIDAR

WiFi, GSM/GPRS
WiFi, GSM/GPRS
WiFi, Ethernet

WiFi

WiFi

WiFi

Bluetooth

WiFi, GSM/GPRS

Data correlation

Signal patterns
Signal patterns

VGG19, GoogLeNet
event detection via thresholds and time-interval-based rules
Manual video inspection and Robber’s test

k-means clustering, Random Forest, k-nearest neighbors (KNN)

CNNs (MobileNet, DenseNet, Inception, ResNet, etc.), U-Net for
segmentation, CHT for detection, Naive Bayes (NB)

Yolov3-tiny, Majority voting, Object tracking

Shape and color-based image filtering (bee and mite templates),
3-stage detection process

Mel-Frequency Cepstral Coefficients (MFCC), Support vector
machine (SVM), Random Forest, XGBoost (gradient boosting),
VGG19, Shallow CNN, Grad- CAM, CQT (Constant Q transform)

statistical correlation + environmental trend analysis
LSTM neural networks, AdamX optimizer

AlexNet, ResNet, Deeplabv3 (semantic segmentation)

Gaussian Mixture Models (GMM), Neural network, Support vector
machine (SVM), Random Forest, k-nearest neighbors (KINN)

Hidden Markov Models (HMM), Gaussian Mixture Models (GMM),
Linear Predictive Coding (LPC), Mel-Frequency Cepstral
Coefficients (MFCC)

BFCI formula: 6 - T + b - P 4 ¢ - W (weather scoring);
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Libal et al. [53] Microphone - Mel-Frequency Cepstral Coefficients (MFCC), Support vector

machine (SVM), Linear Discriminant Analysis (LDA), Random
Forest, k-nearest neighbors (KNN)

Chien et al. [136] Camera WiFi YOLOv7
Penaloza-Aponte et al. [54] Tags, Camera WiFi -
Degenfellner et al. [86] Weight scale, Enviromental data GSM/GPRS Facebook Prophet, Similar Trend Monitoring (STM), Similar Trend

Monitoring (STM).1, Principal Component Analysis (PCA),
MM-Regression

Kongsilp et al. [55] Camera - Kalman filter, Hungarian algorithm, Mask R-CNN

Divason et al. [87] Camera - Faster R-CNN with ResNet18/50/152 + FPN backbones,
DeblurGAN

Chowdhury et al. [56] Camera - YOLOvS8

Libal et al. [114] Microphone - Mel-Frequency Cepstral Coefficients (MFCC), LASSO regression,
Autoencoder neural networks

Bairo et al. [30] Weight scale GSM/GPRS Custom calibration model using linear regression on
resistance-voltage-weight relationship

Camayo et al. [88] Temperature, Humidity, CO2, TVOC WiFi Neural network, Random Forest, Decision Trees (C4.5), Weighted

multi-criteria aggregation algorithm, Data aggregation techniques
(AVG, COUNT), XGBoost (gradient boosting)

Liyanage et al. [126] Temperature, Rain detection, Humidity, WiFi event detection via thresholds and time-interval-based rules
Air Quality
Narcia-Macias et al. [89] Temperature, Humidity, Camera = YOLOv7
Minaud et al. [115] Temperature - Generalized Additive Model (GAM), event detection via thresholds
and time-interval-based rules, RP_median thermal index, GLM
validations
Garcao et al. [90] Temperature, Humidity, Microphone ~ WiFi CNN, Logistic Regression, k-nearest neighbors (KNN), Principal

Component Analysis (PCA), YAMNET, VGGish, Feedforward
neural network (FNN), Kendall’s tau

Pérez-Delgado et al. [140] Camera - CNN

Kamga et al. [116] Enviromental data, Local land cover = ANFIS-SC (Adaptive Neuro-Fuzzy Inference System + Subtractive
quality index (LLCQI), Clustering)
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Kontogiannis et al. [91] Temperature, Humidity, Microphone =~ WiFi CNNs (VGG-16/19, ResNet-18/50, WideResNet, Inception),
Fuzzy-stranded-NN

Smerkol et al. [127] Temperature, Air Pressure, Rain NBIoT Support vector machine (SVM), Random Forest, Decision Trees

detection, Humidity, Weight scale (C4.5), ADABOOST, Gradient Boost

Lei et al. [57] Camera - YOLOv8m, OC-SORT, BOX-METHOD

Nguyen et al. [58] Camera - CNN, YOLOVS5, Faster RCNN, Focal Loss, Overlap Sampler

Robles-Guerrero et al. [92] Microphone - CNNis: EfficientNet, ConvNeXt, MobileNet, ShuffleNet,
ResNet18, etc.

Hall et al. [137] Microphone, Camera - Principal Component Analysis (PCA), Discriminant Function

Analysis (DFA), 2D Fourier Transform (2DFT), classification via
DF-space projection

Bono et al. [117] Temperature, UV index, Rain detection, GSM/GPRS Vector Autoregressive (VAR), impulse response functions (IRF),
Wind speed and direction, Humidity, Granger causality tests
Weight scale, Microphone
Ramirez-Diaz et al. [118] Enviromental data - Random Forest, Decision Trees (C4.5), XGBoost (gradient boosting),
Boruta FS
Ho et al. [59] Microphone - Fast Fourier Transform (FFT), Short term Fourier transform (STFT),

Mel-Frequency Cepstral Coefficients (MFCC), Support vector
machine (SVM), Logistic Regression, Random Forest, Extra Trees
(ET), k-nearest neighbors (KNN), CQT (Constant Q transform),
Spectral Contrast

Varkonyi et al. [119] Microphone = Short term Fourier transform (STFT), Mel-Frequency Cepstral
Coefficients (MFCC), Spectral Centroid, Zero Crossing Rate,
Histogram-based Gradient Boosting + GA-based feature selection

(regression)
Karan et al. [31] Temperature, Light illuminance, WiFi event detection via thresholds and time-interval-based rules
Humidity, Weight scale, Microphone,
Accelerometer
Lee et al. [133] Temperature, Humidity, CO,, O, IR, power line -

Weight scale, Counter communication (PLC)
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Robustillo et al. [120]

Sledevic et al. [64]
Otesbelgue et al. [93]

Libal et al. [61]

Kulyukin et al. [121]
Micheli et al. [62]

Dickson et al. [63]
Gaikwad et al. [32]
Sledevic et al. [60]

Luz et al. [94]

Igbal et al. [65]

De Simone et al. [95]

Newton et al. [96]

Temperature, Air Pressure, Light
illuminance, Rain detection, Wind
speed and direction, Humidity,
particulate matter, Weight scale

Camera

Temperature, Humidity, Microphone

Microphone

Temperature, Weight scale, Camera
Camera

Camera
Temperature, Humidity, Weight scale
Camera

Microphone

Microphone

Microphone

Temperature, Humidity, CO,, Weight
scale, Vibration

LoRaWAN

Vector Autoregressive (VAR), Dynamic Factor Analysis (DFA),
ombining data from multiple time series (CMTS), eneral multivariate
auto-regressive state-space (MARSG), Vector Error Correction (VEC)

YOLOvVS8-pose (nano, medium, large)

Support vector machine (SVM), Random Forest, k-nearest neighbors
(KNN), multilayer perceptron (MLP), extreme learning
machine (ELM)

Mel-Frequency Cepstral Coefficients (MFCC), gammatone cepstral
coefficients (GTCC), BURG algorithm, MUlItiple SIgnal Classification
(MUSIC), Autoencoder, thresholding (T1, T2, T3, T*), empirical
Bayes classifier (ML thresholding)

ANN, CNN, LSTM neural networks, ARIMA

Gaussian derivative (GDER), Gray-level local variance (GLLV),
Steerable filters (SFIL), Tenengrad (TENG), and Tenengrad variance
(TENV), t-distributed Stochastic Neighbor Embedding (t-SNE)
Kalman filter, YOLOVS, Optical Flow + polynomial regression
event detection via thresholds and time-interval-based rules
YOLOvV8m + YOLOvS8n-seg for detection & direction, rule-based
behavior detection for 4 patterns (foraging, fanning, defense,
washboarding), BoT-SORT, ByteTrack, StrongSORT, DeepOC-SORT,
OC-SORT tracking algorithms

Mel-Frequency Cepstral Coefficients (MFCC), Support vector
machine (SVM), Random Forest, multilayer perceptron (MLP),
VGG16/ResNet50/MobileNet/YOLO, Mel spectrograms
Mel-Frequency Cepstral Coefficients (MFCC), CNN, LSTM neural
networks, Support vector machine (SVM), k-nearest neighbors
(KNN), Naive Bayes (NB), Mel spectrograms, transformer mode
Short term Fourier transform (STFT), Mel-Frequency Cepstral
Coefficients (MFCC), TinyML neural network (3-layer NN)
analysis based on signal tracking, vibration spectrograms, and
time-series trends
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Zheng et al. [33]

Alifieris et al. [134]

Janetzky et al. [66]
Rathore et al. [97]
Borgianni et al. [98]

Kulyukin et al. [122]

Varkonyi et al. [67]

Williams et al. [68]

Mahajan et al. [99]

Cota et al. [34]

Vallone et al. [132]

Abdollahi et al. [35]

Temperature, Humidity, Microphone,
Camera

Temperature, Air Pressure, Humidity,
Weight scale, Enviromental data,
Microphone

Microphone
Camera
Microphone

Electromgnetic radiation (EMR), Air
Pressure, Solar radiation, Rain
detection, Wind speed and direction,
Humidity, Camera

Microphone

Camera, Doppler radar counter

Microphone, Camera

Temperature, Lid microswitch,
Humidity, Weight scale, Microphone,
GPS module

Temperature, Humidity, Weight scale,
Microphone

Microphone

WiFi

LoRaWAN, WiFj,
GSM/GPRS

WiFi

GSM/GPRS

YOLOV5, DeepSORT, rule-based bee entry/exit/count logic

rule-based journaling, checklist mapping, data stream aggregation

Random Forest, Isolation Forrest, Principal Component Analysis
(PCA), Autoencoder neural networks, Spectrograms

CLAHE (contrast enhancement), Bilateral filter, Hough Circle
Transform

DenseNet121, ResNet50, InceptionV3, VGG16; Federated Averaging
(FedAvg), CNN-based DNNs (spectrogram input)

Support vector machine (SVM), Linear regression, Random Forest

Short term Fourier transform (STFT), Mel-Frequency Cepstral
Coefficients (MFCC), MFCC differential coefficients (MFCC delta),
CNN, LSTM neural networks, Spectral Centroid, Zero Crossing Rate,
DANi NF method, Chroma

Linear Predictive Coding (LPC), Support vector machine (SVM),
DenseNet, Log Area Ratios (LAR)

Mel-Frequency Cepstral Coefficients (MFCC), YOLOv7, YOLOVS,
Mel spectrograms, Single Shot Multibox Detector (SSD), Detection
Transformer (DETR), Dense NN (2-layer MLP on MFCC+Mel
features)

event detection via thresholds and time-interval-based rules

Rule-based trend evaluation for honey production and swarm
behavior prediction

Short-Time Energy, WebRTC VAD, CRDNN




Sensors 2025, 25, 5359

39 of 47

Table Al. Cont.

PUBLICATION Sensor/Data Type Communication Type Method/Algorithm
Vit et al. [128] Camera - CNNs (VGG19, DenseNet121, EfficientNetV2S, ResNet50,
InceptionV3)
Kulyukin et al. [69] Camera WiFi YOLOvV3, YOLOv4-tiny, YOLOv7-tiny, OmniBeeM
Jeon et al. [138] Camera GSM/GPRS YOLOv5s
Wu et al. [123] Tags, Dew point, Air Pressure, Solar - LSTM neural networks, gated recurrent unit (GRU)
radiation, UV index, Rain detection,
Wind speed and direction, Humidity
Safie et al. [70] Camera - YOLOV3, SqueezeNet (18-layer CNN), DarkNet-53 (53-layer CNN)
Milovanovic et al. [36] 64 IR opto-reflective sensors WiFi -
Phan et al. [129] Microphone - Logistic Regression, Random Forest, Decision Trees (C4.5), Extra
Trees (ET), XGBoost (gradient boosting), k-nearest neighbors (KINN)
Kviesis et al. [37] Temperature, Weight scale GSM/GPRS event detection via thresholds and time-interval-based rules,
CNN-based DNNS5s (spectrogram input)
Abdollahi et al. [100] Temperature, Humidity, Microphone - discrete wavelet transform (DWT), Mel-Frequency Cepstral
Coefficients (MFCC), Spectrograms
Campell et al. [124] Temperature, Humidity, Weight scale, - Short term Fourier transform (STFT), Non-Negative Matrix
Microphone, Camera Factorization (NMF), Masked NMF, Minimum Covariance
Determinant (MCD), ANN
Grammalidis et al. [130] Temperature, Humidity, Camera, - CNN, Mask R-CNN, U-TAE (Transformer + U-Net), YOLOv6
Microscope images, Satellite images
Florea et al. [131] Temperature, Air Pressure, Humidity, - event detection via thresholds and time-interval-based rules
Microphone, ultrasonic distance
Libal et al. [71] Microphone - Fast Fourier Transform (FFT), BURG algorithm, Autoencoder neural
networks, Blackman-Tukey
Chen et al. [38] Temperature, Humidity, Weight scale, = LoRaWAN event detection via thresholds and time-interval-based rules

Sledevic et al. [72]
Sharma et al. [101]
Sledevic et al. [73]
Barbisan et al. [102]

Counter
Camera
Camera
Camera
Microphone

YOLOv8m
CLAHE (contrast enhancement), CNN (ResNet-50, Inception V3)
YOLOv8m

Short term Fourier transform (STFT), Mel-Frequency Cepstral
Coefficients (MFCC), Support vector machine (SVM), multilayer
perceptron (MLP)
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Durga et al. [103] Camera - Vision Transformer (ViT14, ViT16, ViT32)
De Simone et al. [104] Microphone - Short term Fourier transform (STFT), Mel-Frequency Cepstral

Hamza, et al. [39]
Sanz, et al. [40]

Ruvinga, et al. [105]

Thi, et al. [74]
Lee, et al. [106]

Capela, et al. [41]
Dokukin, et al. [107]
Nasir et al. [139]
Milovanovi¢ et al. [42]
Divason et al. [108]

Braga et al. [135]

Temperature, Humidity, Weight scale,
Microphone

Temperature, Air Pressure, Humidity
Microphone

Microphone
Camera

Weight scale, Camera
Microphone

Camera, Infrared camera
900 IR photo reflectors
Camera

Vibration, GPS module

LoRaWAN

GSM/GPRS

GSM/GPRS

Coefficients (MFCC), 2-layer NN
event detection via thresholds and time-interval-based rules

Statistical analysis (ANOVA + Fisher LSD)

Short term Fourier transform (STFT), Mel-Frequency Cepstral
Coefficients (MFCC), CNN, LSTM neural networks, Logistic
Regression, multilayer perceptron (MLP)

Genetic Programming (GP)

ORB (Oriented FAST and Rotated BRIEF), Contrast-Limited
Adaptive Histogram Equalization (CLAHE),

RGB/HSV /Lab/Gray/YCrCb color models, Histogram
Equalization

DeepBee# (custom-trained CNN)

Support vector machine (SVM), Logistic Regression, Random Forest,
XGBoost (gradient boosting), Statistically Weighted Syndrome
(SWS), OVP method

Xception, GoogLeNet, Ensemble Bagged Trees, Multi-evidence
fusion via weighted voting

Reflectivity-based classification (voltage thresholds), Absorption
spectroscopy

Faster R-CNN + ResNet50-FPN backbone, Enhanced Deep
Super-Resolution (EDSR), Stochasticgradientdescent(SGD)
Rule-based detection: vibration triggers + GPS tracking +
notification logic
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