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Abstract: Driven by the widespread adoption of deep learning (DL) in crop mapping with satellite
image time series (SITS), this study was motivated by the recent success of temporal attention-
based approaches in crop mapping. To meet the needs of beekeepers, this study aimed to develop
DL-based classification models for mapping five essential crops in pollination services in Quebec
province, Canada, by using Sentinel-2 SITS. Due to the challenging task of crop mapping using
SITS, this study employed three DL-based models, namely one-dimensional temporal convolutional
neural networks (CNNs) (1DTempCNNs), one-dimensional spectral CNNs (1DSpecCNNs), and
long short-term memory (LSTM). Accordingly, this study aimed to capture expert-free temporal and
spectral features, specifically targeting temporal features using 1DTempCNN and LSTM models,
and spectral features using the 1DSpecCNN model. Our findings indicated that the LSTM model
(macro-averaged recall of 0.80, precision of 0.80, F1-score of 0.80, and ROC of 0.89) outperformed
both 1DTempCNNs (macro-averaged recall of 0.73, precision of 0.74, F1-score of 0.73, and ROC
of 0.85) and 1DSpecCNNs (macro-averaged recall of 0.78, precision of 0.77, F1-score of 0.77, and
ROC of 0.88) models, underscoring its effectiveness in capturing temporal features and highlighting
its suitability for crop mapping using Sentinel-2 SITS. Furthermore, applying one-dimensional
convolution (Conv1D) across the spectral domain demonstrated greater potential in distinguishing
land covers and crop types than applying it across the temporal domain. This study contributes to
providing insights into the capabilities and limitations of various DL-based classification models for
crop mapping using Sentinel-2 SITS.

Keywords: satellite image time series (SITS); land cover classification; remote sensing (RS); deep
learning (DL); geospatial artificial intelligence (GeoAI); beehives; Quebec; Canada

1. Introduction

Traditionally, crop-type data are gathered through field surveys, which are time-
intensive and costly, especially for large-scale mapping [1]. The growing availability of
remote sensing (RS) data now allows for the automatic creation of crop maps by leveraging
spectral differences between crop types, offering a more efficient and scalable approach [2].
Some studies use single-date RS data to identify crops by selecting imagery based on the
crop growth calendar [3]. Although single-date methods involve fewer image-processing
tasks, they present challenges in identifying the best time for crop classification [4]. Alterna-
tively, a satellite image time series (SITS) enables continuous monitoring of crop dynamics,
allowing for the distinction of crop types based on their distinct spectral signatures and
providing detailed insights into the various phenological stages throughout the growing
season [5,6]. Effectively utilizing temporal sequences to capture fluctuations in crop growth
is a significant challenge in crop mapping using SITS data. This has sparked interest in
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leveraging methods capable of using SITS data to extract features that provide insights into
vegetation growth stages.

Certain approaches derive phenological features from SITS for further analysis in-
stead of directly using RS data. One approach is to use the original vegetation indice
(VI) values during different periods of the year [7]. This approach could have the draw-
back of overlooking certain crucial information inherent in the time series inputs since
the sequential relationship of VI is not expressly taken into account [8]. Accordingly, the
temporal sequence of the images’ presentation has no bearing on the results; in other words,
rearranging the order of values in the series would not alter the model’s outcomes or its
level of accuracy. An alternative approach is to pre-compute temporal features from the VI
time series [9–11]. This approach, due to taking into account the sequential relationship
of Vis, may boost the accuracy of classification compared with the original VI values [12].
Employing or crafting temporal features from VIs such as maximum VI, approximations of
crucial dates in the phenological stages of the vegetation classes such as the timing of peak
VI, and beginning of green-up [13,14] or more complex temporal feature extractors such as
pre-defined mathematical equations/models [15–17] have been extensively employed for
multi-temporal classification and vegetation phenology investigations. This approach also
poses several challenges in extracting temporal features from vegetation dynamics, includ-
ing (i) the requirement for manual model design and feature extraction, which depends on
human expertise and domain knowledge and may not be well suited for specific tasks [8];
(ii) manual feature engineering is time-consuming and is influenced by environmental
changes [18]; and (iii) the use of fixed pre-defined models and mathematical assumptions
can restrict adaptability when dealing with various temporal patterns [19]. Accordingly,
addressing this issue necessitates more adaptable and automated methods that can make
the most of the temporal aspect [20]. Deep learning (DL) presents promising solutions
for addressing this challenge and demonstrates considerable potential in capturing and
representing features from time series data obtained through RS [18].

In recent years, DL models have shown outstanding performance in various computer
vision tasks such as image classification, semantic segmentation, object tracking, and
object detection [21–23]. Unlike machine learning (ML) models that require empirical
feature design and manually crafted features [24], DL models can automatically extract
high-level features from high-dimensional images in an expert-free end-to-end fashion.
Considering the strengths of DL models, various attempts have been made to apply
DL architectures to the classification of image time series [8,25,26], particularly for the
aim of crop mapping [8,27,28]. Two main DL architectures used in the classification of
SITS are convolutional neural networks (CNNs) [8,15,26] and recurrent neural networks
(RNNs) [20,25]. Numerous studies have highlighted the significant potential of these two
DL models in the field of crop mapping [26,28–30].

CNNs stand out as a prominent DL architecture extensively employed in RS applica-
tions, especially land cover classification [31]. CNNs have been employed in RS research for
SITS classification to extract spatial and/or spectral features, accomplished through either
1D convolution along the spectral dimension [32], 2D convolution across spatial dimen-
sions [33], or 3D convolution across both spectral and spatial dimensions [34]. Nonetheless,
applying convolutions in the spectral and/or spatial dimensions leads to overlooking the
temporal aspect and sequence of images [26]. Applying convolutions across the temporal
domain has demonstrated effectiveness in addressing temporal aspects in the SITS clas-
sification [26,35]. RNNs are another DL architecture that can link adjacent observations
and capture dependencies across time steps to learn sequential relationships [36]. Due to
their ability to process sequential data, RNNs are frequently viewed as a suitable choice
for understanding the temporal dynamics in SITS and representing changes in land cover
patterns [37]. The long short-term memory (LSTM), a popular variant of RNN, is created to
overcome the shortcomings of traditional RNNs by enabling them to accurately capture
long-term dependencies while circumventing the issue of vanishing gradients. The LSTM
has been utilized in RS for various applications, including detecting changes in bi-temporal
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images [37,38], classifying time series data to distinguish crops [25,30,39], analyzing land
use and land cover [40,41], and studying vegetation dynamics [42].

Accurate crop prediction is crucial for beekeepers, aiding in strategic hive placement
for optimal pollination efficiency and comprehensive coverage across diverse crop pollina-
tion needs. Accordingly, this study aimed to map five essential crops for pollination services
across a region in Quebec, Canada, using Sentinel-2 SITS. To accomplish this aim, this study
attempted to provide beekeepers with three DL-based models, namely one-dimensional
temporal CNNs (1DTempCNNs), one-dimensional spectral CNNs (1DSpecCNNs), and
LSTM. Furthermore, the motivations of this study were investigated to address the follow-
ing research concerns: (i) assessing the performance of two DL architectures of CNNs and
LSTM in crop mapping; (ii) investigating the potential of applying one-dimensional convo-
lution (Conv1D) across the temporal domain (i.e., 1DTempCNNs model) and its efficacy
in crop type prediction compared with applying Conv1D across the spectral domain (i.e.,
1DSpecCNNs model), (iii) providing an approach for tuning models’ architecture by assess-
ing the impact of each hyperparameter in the model’s architecture on its accuracy using the
ANOVA (analysis of variance) method, and (iv) outlining the advantages and limitations
of the provided DL-based models in predicting five essential crops for the beekeepers. The
specific highlight of the presented study that differentiated it from preceding ones was its
ability to address these concerns.

2. Materials and Methods

The methodology implemented in this research is described in Figure 1. The initial
phase of the research involved gathering and preprocessing the ground reference data
in ArcGIS Pro 3.3.0. The ground reference data aided in training the models, finding the
optimized architectures of DL models, and evaluating their accuracy. Having reduced
the number of samples in the majority classes and made a relative balance among classes,
ground reference pixels were partitioned into training, validation, and test subsets. Follow-
ing the division of ground reference pixels into training, validation, and test subsets and
ensuring relatively consistent class distributions across all subsets, we examined whether
the dataset partitioning adhered to the assumption of independence and identical distribu-
tion (IID). Accordingly, the conformity to the IID assumption was evaluated by comparing
the cumulative distribution functions (CDFs) of subsets pairwise and examining the corre-
sponding p-values through the Kolmogorov–Smirnov (KS) statistical test. Subsequently,
10-day interval median composites of Sentinel-2 satellite imagery comprising 10 spectral
bands (i.e., blue, green, red, red-edge1, red-edge2, red-edge3, NIR, red-edge4, SWIR1,
SWIR2) were created through the Earth Engine Python API on the Google Earth Engine
(GEE) cloud-based platform. This process entailed capturing the median pixel values of
corresponding pixels in the images for each band within 10-day intervals to accentuate the
dynamics of vegetation growth. Then, the values of the spectral bands were extracted for all
training, validation, and test pixels from April to October 2021. Subsequently, the models
were trained with the training pixels, the optimal architecture for each DL model was
determined using the validation pixels, and the accuracy of the models was assessed with
the test pixels. Finally, the DL-based model exhibiting the highest accuracy was selected
for predicting land cover and crop type throughout the study area.
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Figure 1. The flowchart of the research methodology.

2.1. Study Area

Our study was undertaken in a region in Quebec province, Canada (Figure 2), empha-
sizing the diverse cultivation of crucial crops for beekeepers, including apples, corn, soy,
canola, and small fruits (e.g., berries, blueberries, strawberries, and raspberries). Quebec’s
croplands are crucial for supporting honeybee populations and enhancing crop yields [43].
Honeybees rely on these lands for forage, serving an essential role in pollination [43].
Predicting crop types helps beekeepers strategically place hives for optimal forage ac-
cess, improving hive management and maximizing productivity. Understanding the crop
landscape also aids in addressing challenges like pesticide exposure risks, promoting
sustainability, and supporting pollinator well-being.



Remote Sens. 2024, 16, 4225 5 of 19Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 2. Geographic location of the study area with a true-color median composite of Sentinel-2 
satellite imagery generated for 1–10 April 2021. 

2.2. Data and Preprocessing of the Data 
2.2.1. Satellite Imagery 

This study utilized multi-temporal archived Level-2A orthorectified atmospherically 
corrected surface reflectance Sentinel-2 satellite images obtained from GEE via the Earth 
Engine Python API. The Sentinel-2 mission encompasses two satellites, namely Sentinel-
2A and Sentinel-2B, launched in 2015 and 2017, respectively. Both satellites offer global 
coverage of the Earth’s surface every 10 days, thereby enabling a combined revisit cycle 
of 5 days for the satellite constellation. The multi-temporal characteristics of Sentinel sat-
ellite imagery allow it to effectively capture the unique phenological and temporal pat-
terns of different crops, drawing upon insights emphasized by Veloso et al. [44] regarding 
the accuracy of crop classification using multi-temporal satellite data. 

In this study, Sentinel-2 products underwent preprocessing on the GEE platform, in-
volving acquiring images at 10-day intervals with cloud coverage below 20% from April 
to October 2021. A median function was applied to each 10-day interval image collection 
to select the median pixel reflectance values, resulting in 10-day interval composites. The 
median function enabled the production of cloud-free images across the study area. Ad-
ditionally, this function eliminated erroneous values caused by the presence of extremely 
bright, dark, or noisy pixels [45]. 

2.2.2. Ground Reference Data 
Ground reference data for this research came from two sources: the Annual Space-

Based Crop Inventory (ACI) provided by Agriculture and Agri-Food Canada (obtained 
from https://open.canada.ca accessed on 13 December 2023), and the Database of Declared 
Agricultural Parcels and Production (BDPPAD) from La Financière Agricole du Québec 
(obtained from https://www.fadq.qc.ca accessed on 11 February 2024). ACI maps out ag-
ricultural and non-agricultural land cover across Canada, while BDPPAD offers detailed 
information on agricultural parcels linked with client records. The data extracted from 
this source encompassed 13 classes, including 5 essential crops for beekeepers (namely 
apples, corn, canola, soy, and small fruits such as berries, blueberries, strawberries, and 
raspberries) along with 8 land cover classes. 

  

Figure 2. Geographic location of the study area with a true-color median composite of Sentinel-2
satellite imagery generated for 1–10 April 2021.

2.2. Data and Preprocessing of the Data
2.2.1. Satellite Imagery

This study utilized multi-temporal archived Level-2A orthorectified atmospherically
corrected surface reflectance Sentinel-2 satellite images obtained from GEE via the Earth
Engine Python API. The Sentinel-2 mission encompasses two satellites, namely Sentinel-
2A and Sentinel-2B, launched in 2015 and 2017, respectively. Both satellites offer global
coverage of the Earth’s surface every 10 days, thereby enabling a combined revisit cycle of
5 days for the satellite constellation. The multi-temporal characteristics of Sentinel satellite
imagery allow it to effectively capture the unique phenological and temporal patterns
of different crops, drawing upon insights emphasized by Veloso et al. [44] regarding the
accuracy of crop classification using multi-temporal satellite data.

In this study, Sentinel-2 products underwent preprocessing on the GEE platform,
involving acquiring images at 10-day intervals with cloud coverage below 20% from April
to October 2021. A median function was applied to each 10-day interval image collection
to select the median pixel reflectance values, resulting in 10-day interval composites.
The median function enabled the production of cloud-free images across the study area.
Additionally, this function eliminated erroneous values caused by the presence of extremely
bright, dark, or noisy pixels [45].

2.2.2. Ground Reference Data

Ground reference data for this research came from two sources: the Annual Space-
Based Crop Inventory (ACI) provided by Agriculture and Agri-Food Canada (obtained
from https://open.canada.ca accessed on 13 December 2023), and the Database of Declared
Agricultural Parcels and Production (BDPPAD) from La Financière Agricole du Québec
(obtained from https://www.fadq.qc.ca accessed on 11 February 2024). ACI maps out
agricultural and non-agricultural land cover across Canada, while BDPPAD offers detailed
information on agricultural parcels linked with client records. The data extracted from
this source encompassed 13 classes, including 5 essential crops for beekeepers (namely
apples, corn, canola, soy, and small fruits such as berries, blueberries, strawberries, and
raspberries) along with 8 land cover classes.

https://open.canada.ca
https://www.fadq.qc.ca
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2.2.3. Dataset Partition

In classifying land covers and crop types, addressing imbalanced distributions is
crucial as it can skew training data and affect classification accuracy. To mitigate this, we
balanced class distributions by reducing samples in majority classes, then divided pixels
into training, validation, and test sets in proportions of 60%, 20%, and 20%, respectively.
The sets, totaling 1,074,097, 358,027, and 358,047 pixels, respectively, were used for model
training, hyperparameter and architecture tuning, and evaluation.

The conformity of the dataset partitioning to the IID assumption was evaluated by
comparing the CDFs of the subsets using the KS statistical test. The KS test statistics were
1.8 × 10−6 for the training vs. validation datasets, 4.6 × 10−6 for the training vs. test
datasets, and 5.72 × 10−6 for the validation vs. test datasets, all resulting in a p-value of
1.0. These low KS statistics indicate minimal differences in the distributions, and the p-
value of 1.0 suggests no statistically significant differences among the dataset distributions.
Therefore, the null hypothesis cannot be rejected, confirming that the training, validation,
and test datasets are likely from the same distribution and adhere to the IID assumption.

2.3. Deep Learning (DL) Models

DL models belong to a category of artificial neural networks (ANNs) distinguished
by their ability to discern complex patterns and representations within extensive datasets.
Their multilayer architecture empowers them to acquire hierarchical understandings of
input data, with each layer progressively capturing more abstract features. DL models are
particularly proficient at autonomously extracting meaningful features or representations
directly from raw data. Instead of the traditional approach of manual feature engineering,
DL models autonomously glean pertinent features from the data during the training phase.
This intrinsic capacity negates the necessity for extensive feature engineering, rendering DL
models highly adaptable to diverse domains [36]. DL models can have various architectures
tailored to specific tasks. This research centers on two widely recognized architectures,
CNNs and LSTM, renowned for their remarkable ability to capture features [46,47].

2.3.1. Convolutional Neural Networks (CNNs)

CNNs are advanced neural network architectures tailored for processing structured
grid data such as images or time series. They comprise several layers, including convo-
lutional, pooling, and fully connected layers, employing convolutions to autonomously
identify and capture significant features from the input data. This enables CNNs to excel in
pattern recognition and classification tasks while preserving spatial relationships within
the data [48]. The learning process in CNNs unfolds through several key stages. It com-
mences with convolutional layers, where adaptable filters slide over the input image to
discern features, resulting in feature maps that highlight where these features are present.
These feature maps then undergo non-linear activation functions such as rectified linear
unit (i.e., ReLU) to introduce complexity and facilitate the understanding of complex data
relationships. Subsequently, pooling layers are introduced to reduce the spatial dimensions
of feature maps, enhancing computational efficiency by retaining essential information
while discarding less relevant details. After several convolutional and pooling layers,
CNNs commonly incorporate one or more fully connected layers, enabling the model to
perform classification or regression tasks based on the learned features. CNNs are trained
through backpropagation, an optimization technique that iteratively adjusts the model’s
parameters to minimize the disparity between predicted and actual values. Optimization
algorithms like stochastic gradient descent (SGD) or its variants (e.g., Adam) further refine
the model’s parameters by guiding them toward minimizing the loss function. This training
process occurs over multiple epochs, allowing the model to progressively learn and en-
hance its feature representations [36]. The remaining part outlined two CNN architectures,
1DTempCNN and 1DSpecCNN. The 1DSpecCNN model extracts expert-free temporal and
spectral features, focusing on spectral features, whereas 1DTempCNN crafts expert-free
temporal and spectral features, focusing on temporal features.
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• One-dimensional temporal CNNs (1DTempCNNs)

The 1DTempCNN architecture is designed to capture temporal dynamics in time series
data by applying convolutional filters along the temporal dimension of Sentinel-2 satellite
imagery. Each temporal observation is treated as a separate input, allowing the network
to exploit sequential patterns related to crop development and environmental changes.
By focusing on temporal dependencies and variations, the 1DTempCNN aims to extract
features indicating seasonal and phenological shifts essential for distinguishing crop types.
This architecture enhances the model’s ability to recognize time-dependent features.

• One-dimensional spectral CNNs (1DSpecCNNs)

The 1DSpecCNN architecture is intended to extract features from Sentinel-2 imagery
by applying convolutional filters over the spectral dimension of Sentinel-2 satellite imagery,
representing 10 distinct bands. This approach leverages spectral diversity to identify subtle
differences in land cover and crop types. The 1DSpecCNN captures unique features, such
as reflectance variations, that indicate specific vegetation or land characteristics by focusing
on the spectral dimension.

2.3.2. Long Short-Term Memory (LSTM)

RNNs are a type of ANN uniquely designed for processing sequential data. Their
primary strength lies in their ability to understand and learn patterns within sequences,
making them highly suitable for tasks such as time series data. LSTM, one of the most
common RNN architectures, known for achieving state-of-the-art results in sequential
data tasks, excels in capturing long-term dependencies. Its architectural design features
a memory cell that retains current states across sequential instances, along with non-
linear dependencies regulating the flow of information into and out of the cell [49]. The
learning process in the LSTM architecture involves several stages. Initially, the LSTM
receives input data, processes it through gate mechanisms, and updates its memory cell
state. Gate operations, including the forget, input, and output gates, regulate the flow
of information. Non-linear activation functions, such as sigmoid and hyperbolic tangent,
introduce complexity and capture patterns in the data. The LSTM generates an output
based on the input and updated memory cell state at each time step. During training,
techniques like backpropagation through time (BPTT) optimize the model’s parameters
to minimize prediction errors over multiple time steps. In essence, the LSTM learns by
iteratively adjusting its memory cells, gate operations, and output generation to capture
long-term dependencies in sequential data [50].

2.4. Architecture Tuning in DL Models

Crafting and refining architectures in DL models are vital for enhancing performance,
but this process is more complex due to the adaptability of architectures and the lack
of standardized approaches. In this research, architecture tuning of CNNs and LSTM
models followed an iterative trial-and-error process, starting with simpler architectures
and progressively refining them based on classification performance on the validation set.
This involved exploring various combinations of hyperparameters such as the number of
layers, filters/cells per layer, and dropout rate. Among the designed architectures, those
exhibiting promising classification performance on the validation set were chosen as the
basis for further exploration. Accordingly, after establishing the initial architectures for
each DL model, we proceeded to enhance the architectures by adjusting one or two hyper-
parameters, adding layers, rearranging existing layers, or replacing components with more
complicated alternatives. This iterative approach allowed the architecture to evolve in size
and complexity until no further improvement was observed.
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3. Results
3.1. Architectures of DL Models with Optimal Performance

This study established the initial architecture of the 1DTempCNN, 1DSpecCNN, and
LSTM models by evaluating the models’ accuracy across multiple candidate values for
three hyperparameters in each model’s architecture (Table 1). The performance of each of
the 100 designed architectures was assessed based on the macro-average of the F1-score
on the validation dataset. Heatmaps were used to visualize the accuracy of each designed
architecture for each model (Figure 3). For 1DTempCNNs, accuracy declined as the number
of layers increased, while better performance was often observed with a high number
of filters per layer and lower dropout rates. Similarly, for 1DSpecCNNs, increasing the
number of layers led to a decrease in accuracy, indicating that deeper architectures may
not necessarily enhance classification accuracy on the validation dataset (i.e., the model’s
generalizability). The 1DSpecCNN model generally performed better with fewer filters
per layer, despite fluctuations in accuracy. Lower dropout rates were also linked to higher
accuracy for 1DSpecCNN architectures. In the LSTM model, accuracy generally improved
up to two layers, with higher performance often seen when using a greater number of cells
per layer and lower dropout rates, although some fluctuations in accuracy were noted. It
is thus recommended to use relatively shallow architectures with lower dropout rates to
improve the model’s classification accuracy.

Table 1. Candidate values for three hyperparameters and their corresponding optimal values in the
initial architecture configuration of DL models.

Models Hyperparameters of the
Architecture Candidate Values Optimal Value

1DTempCNNs

Number of layers 2, 4, 6, 8 2

Number of filters per layer 32, 64, 128, 256, 512 256

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1

1DSpecCNNs

Number of layers 2, 4, 6, 8 2

Number of filters per layer 32, 64, 128, 256, 512 64

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1

LSTM

Number of layers 1, 2, 3, 4 2

Number of cells per layer 32, 64, 128, 256, 512 512

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1

To examine the impact of each hyperparameter in the model’s architecture on its
accuracy, this study employed the ANOVA method in conjunction with the heatmap
(Figure 3). ANOVA is a statistical method used to assess the impact of independent variables
on a dependent variable. It evaluates whether the dependent variable’s average values vary
significantly across each independent variable’s levels. For each factor (i.e., independent
variable), ANOVA calculates an F-statistic that quantifies the variance attributed to that
factor concerning random error. A high F-value and a low p-value suggest that the observed
differences in means are likely meaningful and not due to random chance, indicating a
significant effect of the factor on the outcome. [51]. Table 2 outlines the results of the
ANOVA method for each hyperparameter in the architecture of all three DL-based models.
The ANOVA results indicated that the number of layers and the dropout rate significantly
impacted model accuracy more than the number of filters per layer in both 1DTempCNN
and 1DSpecCNN models. In the LSTM model, all three hyperparameters had a significant
impact on performance, with the number of layers and dropout rate having the largest
effects, followed by the number of cells per layer with a slightly lower influence.
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Table 2. The ANOVA results for each hyperparameter in the models’ architecture.

Models Hyperparameters of
the Architecture

Sum of
Squares (SS) F-Value p-Value

1DTempCNNs

Number of layers 0.586 16.577 9.327 × 10−9

Number of filters per layer 0.008 0.112 0.978

Dropout rate 0.814 21.424 1.283 × 10−12

1DSpecCNNs

Number of layers 0.482 23.031 2.577 × 10−11

Number of filters per layer 0.007 0.139 0.967

Dropout rate 0.45 15.263 1.131 × 10−9

LSTM

Number of layers 0.021 10.495 5.0 × 10−6

Number of cells per layer 0.018 6.438 1.25 × 10−4

Dropout rate 0.024 9.417 2.0 × 10−6

As explained in Section 2.4, the architecture tuning process of DL models involved an
iterative trial-and-error approach, refining architectures based on classification performance
on the validation set. After investigating the influence of each hyperparameter in the
model’s architecture on its accuracy, exploring potential modifications in the models’
architecture, and ultimately designing initial architectures, optimal architectures were
designated for each model. For the 1DTempCNN model, the optimal architecture (Figure 4)
included 1 Conv1D layer with 256 filters (kernel size of 3) and an inception layer with
3 convolutional branches of various filters (256 and 512 filters with kernel sizes of 1, 3, and
5) following the first Conv1D layer. Each of the Conv1D layer and the inception layer was
followed by a dropout layer with a dropout rate of 0.1, and 2 dense layers with 512 and
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13 units at the end of the architecture. For the 1DSpecCNN model, the optimal architecture
(Figure 5) comprised a Conv1D layer with 64 filters and a kernel size of 3, followed by
an inception layer with 3 convolutional branches of different filters (32 and 64 filters with
kernel sizes 1, 3, and 5). As with the optimal 1DTempCNN architecture, each Conv1D
and inception layer in the optimal 1DSpecCNN architecture was followed by a dropout
layer with a dropout rate of 0.1, and 2 dense layers with 512 and 13 units at the end of the
architecture. Finally, for the LSTM model, the optimal architecture (Figure 6) consisted of 2
LSTM layers (512 and 128 cells), each followed by a dropout layer with a dropout rate of
0.1, and 2 dense layers with 512 and 13 units at the end of the architecture.
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3.2. Performance Assessment of Models

To quantitatively evaluate and compare the performance of DL-based models in land
cover and crop type classification and verify their alignment with real-world conditions,
four accuracy metrics were employed: recall, precision, F1-score, and receiver operating
characteristics curve (ROC). Table 3 delineates the macro-averaged accuracies of the models,
indicating their performance in predicting land covers and crop types on the test dataset.

Regarding the results in Table 3, the LSTM model outperformed both 1DTempCNN
and 1DSpecCNN models. Notably, applying Conv1D across the spectral domain showed
greater potential for distinguishing land covers and crop types than applying it across the
temporal domain, as evidenced by the performance of 1DTempCNN and 1DSpecCNN
models on the test dataset. Furthermore, the per-class accuracy assessment (Table 4)
indicated that, despite notable differences in the DL models’ potential to differentiate
between classes, they performed exceptionally well in identifying five essential crops
for beekeepers compared with other land covers. Figure 7 illustrates the LSTM model’s
predictions for land cover and crop types across the entire study area, alongside the
corresponding ground reference labels.

Centering on distinguishing five essential crop types for beekeepers from other crops
and land covers using the top-performing model, errors in the classification, denoted by
off-diagonal values in the confusion matrix of the LSTM model (Figure A1, Appendix A),
generally fall into several categories as follows: (i) “crop as non-crop” errors resulting from
misclassifying crops as other land covers, (ii) “non-crop as crop” errors stemming from
classifying other land covers as crops, (iii) “essential crops as other crops” errors resulting
from misclassifying five essential crops as other crops, (iv) “other crops as essential crops”
errors related to misclassifying other crops as five essential crops, and (v) “inter-essential
crops” errors corresponding to misclassifying between five essential crops for beekeepers.
Regarding the findings, the top-performing DL-based model (i.e., LSTM) resulted in 10,000
“crop as non-crop”, 7401 “non-crop as crop”, 2245 “essential crops as other crops”, 5285
“other crops as essential crops”, and 1367 “inter-essential crops” misclassified pixels out of
a total of 358,047 test pixels.



Remote Sens. 2024, 16, 4225 12 of 19

Table 3. The macro-averaged accuracy values of DL-based models on the test dataset using four
accuracy criteria.

Models Accuracy Criteria Values

LSTM

Recall 0.80

Precision 0.80

F1-score 0.80

ROC 0.89

1DTempCNNs

Recall 0.73

Precision 0.74

F1-score 0.73

ROC 0.85

1DSpecCNNs

Recall 0.78

Precision 0.77

F1-score 0.77

ROC 0.88Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 19 
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Table 4. Per-class accuracy assessment of models in land cover and crop type classification for the test dataset.

Models Accuracy Criteria
Classes

Pasture Wetland Water Shrubland Forest Urban Barren Apples Small Fruits Canola Soy Corn Other Crops

LSTM

Recall 0.75 0.76 0.98 0.63 0.72 0.64 0.60 0.93 0.94 0.98 0.93 0.94 0.65

Precision 0.77 0.81 0.97 0.55 0.71 0.67 0.63 0.84 0.89 0.97 0.89 0.88 0.77

F1-score 0.76 0.79 0.97 0.58 0.72 0.65 0.61 0.89 0.92 0.98 0.91 0.91 0.71

ROC 0.86 0.88 0.98 0.78 0.85 0.81 0.78 0.97 0.97 0.99 0.96 0.96 0.81

1DTempCNNs

Recall 0.76 0.71 0.95 0.59 0.70 0.66 0.45 0.75 0.79 0.94 0.90 0.86 0.46

Precision 0.68 0.80 0.98 0.48 0.67 0.56 0.61 0.76 0.83 0.93 0.79 0.83 0.75

F1-score 0.72 0.75 0.97 0.53 0.69 0.61 0.52 0.75 0.81 0.94 0.84 0.84 0.57

ROC 0.86 0.85 0.98 0.76 0.84 0.81 0.71 0.87 0.89 0.97 0.94 0.92 0.72

1DSpecCNNs

Recall 0.75 0.74 0.97 0.63 0.72 0.61 0.55 0.87 0.90 0.96 0.93 0.91 0.55

Precision 0.73 0.81 0.97 0.49 0.68 0.66 0.59 0.74 0.87 0.97 0.86 0.87 0.79

F1-score 0.74 0.77 0.97 0.55 0.70 0.63 0.57 0.80 0.88 0.96 0.89 0.89 0.65

ROC 0.86 0.86 0.98 0.77 0.85 0.79 0.76 0.94 0.95 0.98 0.95 0.95 0.77

Note: Bold values indicate the model’s accuracy for the five target crop classes.
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4. Discussion

Earth observation satellites equipped with diverse sensors gather data with varying
spatial, spectral, and temporal resolutions, along with different resistance to atmospheric
conditions. Over the past decade, Earth observation (EO) imagery has become the primary
data source for classifying land cover and mapping crops due to its efficiency and rapid
data acquisition [52]. Furthermore, there has been a significant increase in the adoption
of methods aimed at improving the classification accuracy of EO imagery for crop map-
ping [27]. These methods have evolved from relying solely on individual images [53] to
incorporating time series imagery [54]. Integrating time series of EO satellite imagery
enhances performance by capturing changes in crop phenology throughout the growing
season [55,56]. Traditional classification methods often overlook temporal connections
within image time series [27], highlighting the need for more advanced methods capable
of accounting for these relationships. Geospatial artificial intelligence (GeoAI), utilizing
powerful learning methods such as ML and DL, has emerged as a dominant approach
for classifying EO imagery by addressing temporal relationships within image time series.
This study, aligning with the objectives of beekeepers, aimed to employ GeoAI models to
capture temporal relationships within Sentinel-2 SITS, thereby enhancing crop mapping
accuracy for predicting five essential crops in pollination services.

Two main classification approaches are utilized for analyzing EO satellite imagery in
crop mapping: pixel-based [57,58] and object-based [59,60]. In pixel-based classification,
each pixel in the image is classified individually based on its spectral properties, operating
at the pixel level. Conversely, object-based classification involves grouping adjacent pixels
into homogeneous and meaningful objects or segments, considering higher level entities.
These image objects are then assigned target classes using supervised or unsupervised
classification techniques [61]. Both approaches have their strengths and weaknesses, and
the choice between them depends on specific objectives, data characteristics, and avail-
able resources. In alignment with recent research focusing on crop mapping using DL
methods [20,26,28], this study focused on applying the pixel-based classification approach.

Given the ability of DL models to automatically extract high-level features in an expert-
free end-to-end fashion, this study aimed to capture expert-free temporal and spectral
features, specifically targeting temporal features using 1DTempCNN and LSTM models,
and spectral features using the 1DSpecCNN model. Our findings indicated that applying
Conv1D across the spectral domain proved more effective for distinguishing land covers
and crop types than applying it across the temporal domain. Additionally, our findings,
consistent with those of Rußwurm and Korner [62], demonstrated that the LSTM model out-
performed the CNN models, underscoring its effectiveness in capturing temporal features
and highlighting its suitability for crop mapping using multi-temporal Sentinel-2 satellite
imagery. Furthermore, our findings, consistent with the earlier studies [62–64], demon-
strated the LSTM model’s potential to provide a more accurate solution for crop recognition.

DL models tend to favor majority classes, as every sample equally influences internal
parameters during training. Previous research has addressed imbalanced data challenges
through various strategies at both data and algorithm levels. At the data level, methods like
oversampling [40] and undersampling [65] have been proposed, involving random sam-
pling with or without replacement to effectively tackle class imbalances. At the algorithmic
level, methods such as cost-sensitive learning have been employed to circumvent dataset
manipulation by assigning penalties to samples based on their importance in the training
set [66]. These penalties can be manually assigned through class or sample weights [67], sys-
tematically determined [68], estimated from occurrence probabilities [69], or dynamically
adjusted during training based on sample difficulty [70]. The issue of class imbalance was
addressed in this study through the adoption of strategies at both the data and algorithm
levels. This study employed a tailored approach of random undersampling to reduce the
number of samples in majority classes by a specific ratio, alongside utilizing the “Compute
Class Weight” function provided in the scikit-learn library [71].



Remote Sens. 2024, 16, 4225 15 of 19

The IID assumption of data, fundamental to both ML and DL models, simplifies
modeling processes and enables reliable inferences about the underlying population from
observed data. However, in practical situations, meeting the IID assumption may not al-
ways be feasible or realistic. Spatio-temporal datasets often exhibit spatial and/or temporal
dependencies and variations that contradict this assumption [72]. For instance, time series
data may show temporal dependencies among samples collected at different intervals,
while spatial data may demonstrate spatial dependencies among samples from neighboring
locations, both challenging the independence assumption. Additionally, class-imbalanced
datasets, typical in classification tasks, violate the assumption of identical distribution as
sample distribution varies across different classes. Although ML and DL algorithms may
yield satisfactory outcomes on a given dataset, it is essential to thoroughly evaluate the
performance and generalizability of these models when applied to an independent dataset,
particularly in cases where the IID assumption may be violated. Our findings underscored
the limited generalizability of DL models due to real-world datasets not adhering to the
IID assumption. By applying the trained DL models to various independent datasets,
this research demonstrated the limited generalizability of the DL models, highlighting the
necessity for specifically tailored methods to effectively handle spatial autocorrelation and
heterogeneity (intrinsic to spatial data) and temporal dependencies in the time series data,
which contradict the IID assumption.

The primary limitation of this study was associated with the ground reference data.
While this research utilized ground reference data from two different sources, both sources
had their own inaccuracies, resulting in errors being introduced during the model training
phase. Supervised EO-based crop mapping relies heavily on accurate ground reference
data, which are challenging to obtain due to restricted access to certain regions, the need
for consistent and up-to-date surveys, and potential inaccuracies in observations. These
challenges can affect the precision and reliability of EO-generated crop maps, particularly
in areas with insufficient or inconsistent ground reference data.

5. Conclusions

EO provides large-scale high-resolution data for monitoring Earth’s environment,
which, combined with GeoAI modeling, enhances the analysis of geospatial big data for
applications like land cover classification and crop mapping. This study focused on using
EO imagery for crop mapping, aiding agricultural sustainability by assisting beekeepers
in making informed decisions about hive placement to ensure diverse diets and reduce
pesticide exposure. This strategy improves bee pollination efficiency, increasing crop yields
and reducing bee mortality. This research aimed to map thirteen land cover classes, with
particular emphasis on five essential crops in the pollination services—apples, corn, soy,
canola, and small fruits—in Quebec, Canada, using Sentinel-2 SITS. To accomplish this
aim, this study employed three DL-based models, namely 1DTempCNN, 1DSpecCNN,
and LSTM. In addressing the research concerns, the findings of this research indicated
that (i) the LSTM model outperformed the 1DTempCNN and 1DSpecCNN models in land
cover and crop type classification; (ii) applying Conv1D across the spectral domain was
more effective for distinguishing land covers and crop types than across the temporal
domain; (iii) using a systematic approach for the architecture tuning of models through
assessing the impact of hyperparameters on models’ accuracy helped in optimizing models’
configurations; and (iv) although the developed DL-based models yielded satisfactory
outcomes on all training, validation, and test datasets, our findings underscored the con-
strained generalizability of models attributed to real-world datasets not adhering to the
IID assumption. This research contributes to evaluating various DL-based models for crop
mapping, offering valuable insights for advancing future research and practical applica-
tions in agriculture and environmental management. Furthermore, this study underscores
both the strengths and the limitations of using GeoAI modeling with Sentinel-2 SITS to
address crop mapping challenges.
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