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Abstract: Honey bees play a vital role in ecosystem stability, and the need to monitor colony
health has driven the development of IoT-based systems in beekeeping, with recent studies
exploring both empirical and machine learning approaches to detect and analyze key hive
conditions. In this study, we present an IoT-based system that leverages sensors to record
and analyze the acoustic signals produced within a beehive. The captured audio data is
transmitted to the cloud, where it is converted into mel-spectrogram representations for
analysis. We explore multiple data pre-processing strategies and machine learning (ML)
models, assessing their effectiveness in classifying queenless states. To evaluate model
generalization, we apply transfer learning (TL) techniques across datasets collected from
different hives. Additionally, we implement the feature extraction process and deploy the
pre-trained ML model on a deep edge IoT device (Arduino Zero). We examine both memory
consumption and execution time. The results indicate that the selected feature extraction
method and ML model, which were identified through extensive experimentation, are
sufficiently lightweight to operate within the device’s memory constraints. Furthermore,
the execution time confirms the feasibility of real-time queenless state detection in edge-
based applications.

Keywords: beehive monitoring; machine learning; sound processing; feature importance;
IoT implementation

1. Introduction
Pollination plays a crucial role in fertilization and seed production, directly impacting

the well-being of ecosystems globally. Among the various pollinators, the honey bee (Apis
mellifera) is a significant contributor, estimated to be responsible for over 90% of global
commercial pollination services and approximately 35% of the world’s food crops [1]. In
addition to pollination, honey bees produce important and delicate substances such as
honey, beeswax, propolis, and royal jelly [2], which are widely utilized by humans for
various purposes. However, honey bee populations face numerous threats, including
parasites, ants, hive beetles, and hive robberies, which can lead to colony collapse [3].

Honeybees produce rhythmic thoracic oscillations transmitted as substrate vibrations
or airborne sounds to communicate within the hive [4]. These vibroacoustic signals influ-
ence behaviors related to swarming, including the queen’s actions [5]. The colony’s “sound,”
a continuous low-frequency buzz, results from individual bee signals, with frequencies
primarily around 300, 410, and 500 Hz but surely within the range of 100 to 1000 Hz [6].
The absence of a queen results in the production of a “warble” signal, characterized by a
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frequency of 225–285 Hz during the first 5 h. Subsequently, the signal transitions into a
roaring sound with a frequency of 180 Hz [7]. Both the frequency range and signal pattern
are crucial for detecting potential threats to the colony [8]. Previous studies have used
methods such as endoscopic observations, calorimetric traces, accelerometer recordings,
and electric field measurements [9–11]. Sound data was typically pre-processed with a
band-pass filter (high-frequency cut-off at 2 kHz, low-frequency cut-offs between 20 and
100 Hz) [12,13]. Additional techniques like wavelet decomposition, spectral subtraction,
Mel Frequency Cepstral Coefficients (MFCCs) [14], Hilbert Huang Transform (HHT) with
wavelet analysis, Linear Predictive Coding (LPC) [13], and Short-Time Fourier Transform
(STFT) [15] have also been used for feature extraction and analysis.

Several studies [16–23] have proposed the integration of IoT technologies and sensors
to automate various aspects of beekeeping. In particular, the work presented in [16]
introduces a multi-sensor system designed to measure key metrics such as hive weight,
acoustic signals, internal and external temperature, relative humidity, and CO2 levels under
normal conditions. Additionally, the system aims to analyze these parameters during
specific phenomena, such as honey gathering and swarming, to establish correlations
between these events and the recorded sensor data. In [17], a multi-sensor system is
proposed to measure weather-related parameters both inside and outside the hive, along
with a bee counter positioned at the hive entrance. Furthermore, studies in [18,22] introduce
an imaging system at the hive entrance to monitor honey bee activity. Similarly, the works
presented in [20,21] propose IoT-based systems designed to collect data and transmit it
to the cloud for analysis, specifically for detecting Varroa infestation, a parasitic infection
affecting honey bees. Additionally, the study in [23] proposes a multi-sensor system to
collect vocal, image, and weather data, while also publicly releasing their collected datasets.

One important factor that can be monitored electronically is the presence or absence
of a queen within the hive [24]. The absence of a queen within a hive is a key indicator of
health concerns and may signal impending colony failure, as the queen is essential to the
overall health of the hive. Several approaches have been proposed to detect the absence of
a queen within a hive. Uthoff et al. [7] provide a comprehensive review of such methods,
highlighting various studies that utilize weather-related data, acoustic signals, and other
hive parameters. These approaches, often integrated with Machine Learning (ML) and
Deep Learning (DL) techniques, have demonstrated effectiveness in identifying queenless
states and swarming events.

In [24], an Internet-of-Things (IoT) system utilizing a low-power microcontroller
(MCU) is introduced to detect the presence of a queen bee based on audio recordings from
the hive. The system employs a Tiny Machine Learning (TinyML) classifier, aiming for
high-accuracy predictions while maintaining low power consumption, making it suitable
for resource-constrained edge devices. The study explores Neural Networks (NNs) and
Support Vector Machines (SVMs), with a primary focus on NNs due to the lack of quantiza-
tion methods for SVMs in conventional libraries. Similarly, in Ref. [25], various Machine
Learning (ML) models, including K-Nearest Neighbors (KNN), Multilayer Perceptron
(MLP), Random Forest (RF), and Support Vector Machine (SVM), were evaluated to classify
hives as queenright or queenless. The study utilized two types of data: microclimatic and
bioacoustic. Notably, data for the queenless state was collected from already queenless
hives, ensuring accurate representation of this condition. On the other hand, Refs. [26,27]
proposed the use of Convolutional Neural Networks (CNNs) to characterize and classify
hives as queenless or queenright based on acoustic recordings. This approach involved a
sound processing procedure to extract relevant features before classification, leveraging
CNNs’ ability to analyze complex acoustic patterns. Additionally, in Refs. [28,29], various
models, including classical Machine Learning (ML) techniques and Convolutional Neu-
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ral Networks (CNNs), were examined and evaluated for classifying hives as queenless
or queenright. These studies aimed to assess the effectiveness of different approaches
in accurately detecting the queen’s presence based on hive data. Finally, some studies
have explored the use of Long Short-Term Memory (LSTM) networks for monitoring the
queenless state of a hive [29,30]. These approaches leverage LSTMs’ ability to capture
temporal dependencies in acoustic or environmental data, enhancing the accuracy of queen
state classification.

In this study, we present an IoT-based system that utilizes sensors to capture and
analyze the acoustic signals produced by a beehive. The collected data is transmitted
to the cloud for processing, where it is transformed, adopting Mel Frequency Cepstral
Coefficients (MFCCs) into mel-spectrogram representations, and used as input for machine
learning (ML) models trained to detect the queenright/queenless state of a hive. We evalu-
ate multiple ML models based on their classification performance for queenright/queenless
state classification. Additionally, we assess their ability to generalize to unseen data by
employing transfer learning (TL) techniques across models trained on different hives. In
the final stage, the feature extraction process and the inference of the pre-trained machine
learning model are deployed on a deep edge IoT platform (Arduino Zero). A comprehen-
sive evaluation of memory usage and execution time is conducted. The findings indicate
that the chosen feature extraction technique and machine learning model, selected through
rigorous experimentation, are adequately lightweight to operate within the memory limita-
tions of the device. Additionally, the execution time meets the requirements for real-time
performance in edge-based queenless hive detection scenarios.

2. Materials and Methods
This section provides a description of the experimental process followed to create the

dataset and the step-by-step methodology for the classification between the presence or
the absence of the queen bee based on sound recordings. This includes all the information
regarding the dataset, the pre-processing and the extraction of the MFFC features, as well
as the methodology for determining the feature importance, the approach for training,
testing, evaluating, and implementation of the ML models under investigation.

2.1. Dataset Acquisition

The experiment took place in the agricultural facilities of Aristotle University of
Thessaloniki in Greece (Figure 1c), and it involves monitoring two beehives (hives m11
and m12) during their productive period of the year (May–August). During this period,
each hive is forced into a queenless state by having the beekeepers remove the queen at
specified dates. The hives were left queenless for a few days before introducing the queen
again. This process was repeated two times for each hive, resulting in a dataset with four
queenless periods and six healthy (before, in-between, and after the two queenless periods)
in total for both hives [1].

Throughout the experimental process, the hives are equipped with an acquisition
system, installed on a custom case on top of each hive. The system is equipped with
Behringer ECM8000 microphones for sound recording and environmental sensors (BME280)
monitoring the internal humidity, temperature, and pressure conditions. For this study’s
purpose, only the sound recordings are considered.

The selected microphone, Behringer ECM8000, [31], is an Omnidirectional Condenser
Microphone with 200 Ohms impedance. While its datasheet specifies sensitivity as 70 dB,
an independent calibration report at 94 dB SPL/1 kHz [32] confirms −39.2 dB re 1 V/Pa
(11 mV/Pa). Its frequency response spans the range of 20 Hz–20 kHz. The selected
sound card Focusrite Scarlett’s [33], a 24-bit delta-sigma ADC that is combined with the
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microphone, provides an effective resolution of ∼18 bits. When paired with the Behringer
ECM8000, the system’s practical resolution remains ADC-limited (∼18 bits) for typical
recordings, making it suitable for 0–4 kHz voice, acoustic measurements, and music.

(a) (b)

(c)

Figure 1. (a) Single-floor beehive without monitoring system (left) and modified dual-floor beehive
(right) with the monitoring system; (b) high-quality recording system installed in a specially con-
figured hive chamber; (c) section of the agricultural facilities at Aristotle University of Thessaloniki,
Greece, where the experiment was conducted.

The recording of audio data is a fundamental process of the system and requires special
attention to ensure the quality of the resulting recordings. This quality will entirely affect
the processing stage, while the measurement environment is not particularly favorable.

For the proper positioning of the recording system, the monitored hives were cus-
tomized appropriately. The customization included the use of a second empty hive placed
on top of the hive under monitoring. This is a technique used by the beekeepers to house
a hive with a larger population. In Figure 1a, two hives are on display. The hive on the
left is a single-floor non-monitored beehive and the right hive is a modified dual-floor
beehive under monitor. A metallic mesh was placed between the monitored and the empty
hive to allow for sound diffusion, and the sound recording microphone was placed on
the empty hive, Figure 1b. Also, absorption material was used for external environmental
acoustic noise protection. This setup was implemented for two reasons. The first one is
the sensitivity of the beehive to new modifications. Bee colonies generally oppose the
alteration of the internal space of the hive. Consequently, there was not an option for
a set-up inside the living colony and the proper placement of the systems in a parallel
space, suitably isolated but with acoustic contact, was essential. The second one was for
the protection of the systems from the activity of the bees as well as from the external
environmental conditions.
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The microphone is connected via wire to a computer equipped with the Focusrite
Scarlet 8i6 external sound card, recording at a sampling rate of 44.1 kHz and a 16-bit
resolution. The software used for sound capture is the REAPER Digital Audio Workstation
(REAPER v6.09—27 April 2020). The system is able to monitor continuously throughout
the experimental period. The gathered data was available online with the enabling of
remote access.

As a result, there are sound recordings of the bees throughout the different phases
that the hives are subjected to. Each hive experienced two orphan states, each preceded
and followed by a healthy state. After the second orphan state, the hive was returned to a
healthy condition and maintained as such. Thus, the sequence of states for each hive was
as follows: first healthy state (Healthy A), first orphan state (Orphan A), second healthy
state (Healthy B), second orphan state (Orphan B), and finally third healthy state (Healthy
C). Each phase encompassed multiple days of sound recordings. From the raw sound
recordings and after a feature extraction process that will be explained in Section 2.2, the
final dataset consists of a set of features for every second of sound recordings and two
classes representing the queenless and the healthy states. This dataset was utilized to train
the machine learning models for the binary classification between these two states.

Although the number of hives in this study is limited (two hives), external acoustic
noise is minimized through the use of sound-absorbing materials (Figure 1b), ensuring that
the recorded signals predominantly reflect natural bee activity. The two hives are completely
independent, with no shared biological factors that could confound the data. Furthermore,
each hive underwent multiple transitions between “queenright” and “queenless” states at
different chronological points, introducing temporal variability and enriching the dataset.
This variability also contributes to the system’s resilience to real-world acoustic noise and
environmental fluctuations.

By artificially inducing the “queenless” state, we were able to exert precise control over
the timing and conditions of each hive’s transition. This controlled manipulation enabled
accurate ground-truth labeling of hive status and facilitated the collection of clean, well-
segmented data suitable for supervised machine learning tasks. Finally, our methodological
design is consistent with recent studies in the field, where datasets are often limited to
2–6 hives [28–30] and the artificial induction of queenless states is a commonly employed
practice [27,29].

2.2. Pre-Processing—Feature Extraction

The pre-processing steps involve the conversion of the raw audio data recorded from
the microphones into a set of descriptive sound features, the MFCC. To achieve this, the
raw data is first processed using multiple signal processing techniques, which are described
below. Figure 2 presents an overview of the processing steps performed for the extraction
of the MFCC. Note that different values for the pre-processing parameters were examined
in order to determine the best parameter selection leading to the higher accuracy of the
tested models. As a result, there are multiple variations of the original dataset with the
MFCC features being calculated using different parameter values for each variation.

The process begins by resampling the raw data acquired with 44.1 kHz sampling rate
to a lower frequency. This is done to reduce the data size and reduce calculation complexity
and since only frequency ranges of up to 10 kHz are considered for this particular beekeep-
ing phenomenon. The new sampling frequency (Fs) is one of the parameters that will be
explored as described in Table 1.
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Figure 2. Processing steps for extracting the Normalized MFCC features from the raw audio signal.

Table 1. The parameters used for feature extraction, leading to the four dataset configurations.

Dataset Configuration Fs (Hz) N_FFT N_mels Fmax (Hz)

config_0 4096 1024 9 60–2000

config_1 8192 1024 16 60–4000

config_2 8192 2048 32 60–4000

config_3 16384 2048 32 60–8000

The next step involves pre-emphasizing the higher frequency components of the
acquired signals. This is a common technique that is performed to account for the increased
attenuation of higher frequencies during the transmission of sound through different
mediums. The lower frequencies suffer lower attenuation when traveling through objects
than the higher frequencies. A pre-emphasis coefficient of 0.94 was selected to enhance
higher frequencies and flatten the amplitudes of the frequency components. The resampled
and pre-emphasized signal is then filtered through a linear FIR band-pass filter with
101 taps. The lower frequency limit of the filter was selected at 60 Hz to eliminate the noise
components introduced by the power supply (220 V, 60 Hz). The higher limit was chosen
as a parameter (Fmax), ranging from 2 kHz to 8 kHz, to examine the effectiveness of the
models on data containing different frequency ranges.

The following step is the calculation of the STFT of the acquired signal. It involves
windowing, framing, and shifting the signal and performing the FFT on each frame. The
overall signal is divided into multiple overlapping frames (50% overlap) of a specified sam-
ple duration using a Hann window. For each frame, the FFT is calculated with a specified
resolution (N_FFT) (see Table 1) that is used as a parameter. The result is a spectrogram with
the frequency divided into N_FFT components, each with their corresponding amplitude.
The time axis is divided into overlapping frames, with their duration in samples being
chosen equal to the N_FFT resolution. Figure 3 demonstrates the power spectral density
spectrograms for two acoustic measurements performed by the high-quality microphone.
These are 1 h measurements recorded for a single hive during their healthy and orphan
states. As indicated, the dominant frequency content is found in the below 2 kHz range,
with a noticeable different acoustic signature between the two states. Figure 3 also exhibits
the result of the pre-processing steps (filter and pre-emphasis) on the same signals. Notice
that there is low-frequency noise (60 Hz) due to the power supply (220 V, 60 Hz) that was
attenuated significantly with the filtering process.
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Figure 3. Spectrograms of the raw and pre-processed signals from the healthy and orphan beehive.

For the extraction of the MFCC, the spectrogram is filtered through the mel filter banks,
transforming it into the mel-spectrogram, a logarithmic spectral representation emphasizing
lower frequencies in a similar way that humans perceive sound. The MFCC extraction process
involves the use of triangular filters, each targeting a specific part of the spectrum, determined
by the parameter N_mels and the lower (60 Hz) and upper frequency limits (Fmax), and then
applying the Discrete Cosine Transform (DCT) [34]. For this study’s needs, four configu-
rations were examined: (a) 9 mel bands in the 60–2000 Hz range, (b) 16 mel bands in the
60–4000 Hz range, (c) 32 mel bands in the 60–4000 Hz range, and (d) 32 mel bands in the
60–8000 Hz range (see Table 1). For each second of measurement, the MFCC are extracted
for all the frames contained in that second, and then their median is calculated. The result
is a feature space with N_mels features for each second of measurement indicating the
median value for each mel band.

At this point, the processing steps for the extraction of the MFCC features are estab-
lished. Throughout this process, parameters like the N_FFT resolution, the number (N_mel)
of mel bands, the resampling frequency (Fs), and the upper frequency limit (Fmax) of the
FIR filter are introduced as parameters. So, four different value combinations for these
parameters are considered for this study, as described in Table 1, resulting in four different
configurations of the same dataset. This was done to evaluate how these parameters affect
the performance of the models and eventually select the configuration resulting in the best
trade-off between accuracy and computational requirements. Table 1 also highlights the
number of PCA components utilized for each configuration, which will be discussed in the
following subsections.

2.3. Feature Importance

To estimate the importance of the MFCC features and consequently the contribution
of each mel band to the final decision, Principal Component Analysis (PCA) was employed.
This is a dimensionality reduction technique where the original feature space is transformed
into an orthogonal vector space, with its eigenvectors being the Principal Components (PCs).
Each PC is a linear combination of the original features and is ranked and ordered based on
the variance they explain over the dataset. As a result, it is possible to accurately represent
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the majority of the dataset with only some of the first most important PCs, allowing for
dimensionality reduction and simplification of the structure of high-dimensional data [35].

Apart from the dimensionality reduction, PCA can be used to indirectly infer the
importance of the original features. This is done by examining the weights, or loadings, of
each PC, indicating the contribution each feature has on that component [36]. To quantify
the importance and account for the explained variance each PC has, the following equation
was used:

Importance Score[n] =
N

∑
i

PCi[n]× EVR[i] (1)

where n is the mel band index, N is the total number of PCs, PCi is the weight vector of each
PC, and EVR is the explained variance ratio for each PC. As a result, for every dataset config-
uration, it is possible to identify which mel bands have a significant contribution and which
do not. Apart from that, each MFFC or mel band is associated with a specific frequency
range of the spectrum, which in turn highlights the significant frequency components
considered to distinguish between the queenless and the queenright beehive states.

2.4. Machine Learning Approach

At this stage, the feature extraction method and the approach for determining feature
importance are established. Subsequently, machine learning models are trained and evalu-
ated using the queenright and queenless classes within the dataset. The models considered
include Support Vector Machines (SVMs), Neural Networks (NNs), Logistic Regression
(LR), and K-Nearest Neighbors (KNN). Various parameter combinations were tested for
each model to identify the optimal configuration. Since four dataset configurations were
examined, each model was evaluated across these configurations for each beehive, resulting
in eight distinct test scenarios. This comprehensive evaluation allowed us to assess model
consistency and identify the dataset configuration yielding the best performance.

Another important aspect of the approach that should be examined is the adaptability of
the trained models to new datasets, as this can eventually dictate its applicability in real-world
applications. This is because in real situations, the system is designed to be installed on
completely unknown beehives without months of recordings available. For that matter, a
Transfer Learning (TL) approach was followed, where the two best-performing models are
trained on one hive (m12) and then fit on a very small percentage (0.01%) of the other hive’s
(m11) data. After this minimal training, the models are compared, and the one exhibiting the
lowest drop in performance is selected to be implemented on the final system.

Considering that our machine learning (ML) problem is a binary classification task
with two classes (queenright and queenless), we evaluate the models using well-established
classification metrics, including class-wise precision, recall, and F1-score, as well as the
average F1-score between the two classes [37]. The equations below describe these metrics
in detail:

P0 =
TN

TN + FN
, P1 =

TP
TP + FP

(a)

R0 =
TN

TN + FP
, R1 =

TP
TP + FN

(b)

F10 =
2 · P0 · R0

P0 + R0
, F11 =

2 · P1 · R1

P1 + R1
(c) (2)

In Equation (2), “0” represents the negative class (queenright), and “1” denotes the
positive class (queenless). The terms TN and TP refer to true negative and true positive
classifications, respectively, while FN and FP refer to false negative and false positive
classifications, respectively.
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For model evaluation, we primarily focus on the F1-score, as it provides a balance
between precision and recall. The F1-score is particularly useful for imbalanced datasets,
such as ours, where the data contains a higher number of queenright instances. This metric
gives a more representative measure of model performance in such scenarios, compared to
accuracy, which might be misleading due to the class imbalance [38].

2.5. Hardware Implementation

While accuracy of the models is critical, the model should be lightweight enough to
be implemented in hardware with minimal resources. The targeted embedded system is
the Arduino Zero (Arduino Srl, Somerville, MA, USA), equipped with the arm-cortex-m0
microprocessor. It is a system with limited processing power featuring a 32 KB memory but
with limited power consumption requirements. According to the datasheet, a maximum
value of 6.8 mA is reposted for active mode and a maximum value of 12.2 uA for the standby
mode, both for room temperature. It is also equipped with a debugger that enables better
monitoring and with multiple quality-of-life features provided by the Arduino platform.

For the embedded system sound recording, the Pulse-Density Modulation (PDM)
Micro-Electro-Mechanical Systems (MEMS) Microphone of Adafruit was selected. The PDM
MEMS Microphone, with omnidirectional sensitivity, is suitable for embedded applications
and offers low power consumption. It has an acoustic overload point at 120 dBSPL and
61 dB signal-to-noise ratio. Since it provides digital PDM output, its sensitivity is—26 dBFS.
The MP34DT01-M chip [39], which is the PDM microphone chip, uses a 1-bit sigma-delta
modulator with oversampling, achieving an effective resolution of ∼10 bits (64 dB dynamic
range). While the output is typically decimated to 16-bit PCM for compatibility, the true
resolution is constrained by noise performance. This is sufficient for voice applications
(0–4 kHz) but below high-fidelity audio standards.

To confirm the accurate recording of audio data, experiments were conducted using
both the embedded system and a high-quality audio recording console. For the high-
quality audio recording, the previously described setup was used, which included the
Behringer ECM8000 microphone. For the purposes of implementation, experiments were
carried out to assess the recording quality both in a laboratory environment and at the
hive level, as depicted in Figure 4. The results of the experiments indicated a satisfactory
frequency response of the recordings from the integrated system compared to the high-
quality recordings, particularly in the frequency range of 10–1000 Hz.

Figure 4. High-quality recording system and microphone-based embedded system in specially
configured hive chamber.
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Figure 5 illustrates the frequency content of the recording, derived from recordings
with the following characteristics:

• high-quality sampling rate: 44.1 kHz;
• system sampling rate: 4–16 kHz;
• recording duration: 60 s;
• audio content: sounds of an active hive;
• placement of the two microphones (high-quality and system’s): in close proximity

inside the hive;
• the analysis of the recordings was performed using the Welch method.

Figure 5. Power spectral density diagram of the high-quality recording system and the embedded system.

Figure 5 demonstrates a measurement of a healthy beehive recorded simultaneously
with both the high-quality microphone and the embedded MEMS. This process was per-
formed to ensure some level of consistency between the two microphones, especially for the
low-frequency components. Specifically, we observe frequency content with similar power
and shape across frequencies. More specifically, the PDM recording follows the frequency
response of the high-quality recording for the range of 0–4096 Hz. The SNR of the system
is tied to the SNR of characteristics of the PDM MEMS microphone. The maximum the
embedded system supports is sampling rates up to 16 kHz but with a drop in quality as
frequency increases. As a result, the use of the microphone through the embedded system
was deemed satisfactory to capture low-frequency content up to 4 kHz. Also, the use of the
Arduino Zero board for recording at the embedded system level proved to be an effective
choice that also allowed for a relatively simple implementation in terms of complexity.

The operating cycle of the proposed system involves data sampling, data processing
and feature extraction, the inference of the prediction model, the transmission of the
result, and then entering low-power/sleep mode. Initially, the PDM MEMS microphone is
activated to perform sound measurements of 1 s duration. During the recording, sound
data is stored in a dedicated buffer in memory, with its size being dictated by the sampling
rate of acquisition. The raw signal is then pre-processed to extract the features, and then
the process continues with the inference of the trained models. The prediction result is
then published for user access through the wireless transmission module, which is briefly
activated to perform the transmission. The system then enters sleep mode for a specified
duration (e.g., 10 min) until the process is initiated again.

Due to the limited capabilities of the hardware, a key concern is the memory require-
ments of the proposed approach as well as the processing time required for the feature
extraction and inference of the implemented model. This is one of the reasons why multiple
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dataset configurations were examined, since an increase in FFT resolution or the number
of mel bands or the complexity of the model, for example, could significantly increase the
required memory and the processing time. These concerns were considered before making
the final selection of dataset configuration and model selection. Additionally, there are
optimized libraries (CMSIS) for digital signal processing and machine learning specifically
developed for this series of arm processors that were employed to minimize the processing
time and further optimize the process.

3. Results
This section presents the results that informed the final design decisions for the

developed system.

3.1. PCA

After the feature extraction and the application of the PCA, it was possible to define the
feature importance. More specifically, the mel bands responsible for most of the variance
of the dataset can be established, as explained in the feature importance Section 2.3 of
the Materials and Methods section. For this process, the fourth dataset configuration
(config_03) was selected because of its filter ranges that include the largest part of the
spectrum compared to the other configurations (60–8000 Hz), dividing it into 32 mel bands.
As described in Section 2.3, to determine the importance of each mel-frequency band,
we applied PCA to the config_03 dataset. For each mel band in the original dataset, we
then calculated an importance score using Equation (1), where the component loadings
and explained variance ratios were obtained using built-in functions from the scikit-learn
python library [40]. Figure 6 is a graphical representation of these scores, with the seven
most contributing mel bands (responsible for about 50% of the variance) being highlighted.
Table 2 presents these mel bands in descending order based on their importance along with
their respective frequency range.
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Figure 6. Graphical representation of the importance scores of each mel band.

As outlined, mel band 0, which covers the frequency range 56–240 Hz, is the most
important with an importance score of 0.2013, followed by mel bands 1, 5, 2, 4, 22, and 14.
Mel band 0 has an importance score that is almost 108% higher than that of the second
band, mel band 1. This result is expected, as the frequencies in mel band 0 encompass
nearly all the frequencies associated with the “queenless” state (180 Hz, 225–285 Hz), as
described in Section 1, while its center frequency (152 Hz) is close to 180 Hz, the primary
frequency associated with the “queenless” state. Similarly, mel band 1, which spans from
144 to 336 Hz, includes all the frequencies of the “queenless” state, making these two
mel bands the most significant. Following this, mel bands 5 and 4 predominantly cover
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frequencies associated with the “queenright” state, as described in Section 1, while mel
band 2 encompasses both “queenless” and “queenright” state frequencies. Among the
32 extracted features, the mel bands mel_0 and mel_1 are identified as the most significant,
as they encompass the frequency ranges produced by bees in the orphan state (225–285 Hz
and 180 Hz). Additionally, the mel bands mel_1, mel_5, mel_2, and mel_4 are also highly
important, as they correspond to the frequencies generated by bees in the normal state
(300 Hz, 410 Hz, and 500 Hz).

Table 2. The seven most important mel bands representing about half of the overall variance.

Mel Band Frequency Range (Hz) Importance

mel_0 [56–240] 0.2013

mel_1 [144–336] 0.0973

mel_5 [504–688] 0.0444

mel_2 [232–424] 0.0438

mel_4 [416–600] 0.0343

mel_22 [2888–3488] 0.0327

mel_14 [1376–1664] 0.0303

3.2. ML Models Evaluation

We evaluate multiple machine learning (ML) models to identify the most optimal one,
considering various factors such as performance and adaptability to previously unseen data.
This section details the parameter tuning process and the evaluation of each tested model
on the two hives under the four distinct configurations previously described. Each dataset
is initially partitioned into a training set, comprising 80% of the total data, and a testing set,
comprising the remaining 20%. Parameter tuning is conducted separately for each dataset
to ensure optimal model performance. The ML models assessed in this study include
Support Vector Machines (SVMs), Neural Networks (NNs), Logistic Regression (LR), and
K-Nearest Neighbors (KNN). To ensure robustness, the experiments were repeated ten
times using different random seeds, and the average F1-scores from these runs are reported
in the results.

A critical tuneable parameter for all ML models is the number of principal components
(PCs) retained following Principal Component Analysis (PCA). Additionally, specific
hyperparameters are optimized for each model: for KNN, the number of neighbors (k) is
adjusted, while for NNs, both the number of layers in the network architecture and the
number of training epochs are fine-tuned. Figure 7 presents the parameter tuning process
for KNN and NNs using the first configuration dataset (config_0) with nine mel bands. As
shown in Figure 7a, for both hives (m11, m12), selecting 9 principal components from PCA
and 21 neighbors yielded the optimal performance. Increasing the number of neighbors
led to excessive computational time or convergence failures, making such configurations
unsuitable for consideration.

For the NN, various architectures are evaluated after training for the same number
of epochs (85) by modifying the number of total layers. Our basic architecture is com-
posed of fully connected (FC) layers. The first fully connected (FC) layer has dimensions
(PCs number, 64), while the final layer has dimensions (16, 1), with several intermediate
layers in between. As illustrated in Figure 7b, the optimal architecture for both hives
consists of four total FC layers. The respective intermediate FC layer sizes were (64, 32)
and (32,16) [24,41]. Performance improvements tended to plateau beyond four layers, with
deeper neural network architectures occasionally exhibiting declines in F1-score, likely due
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to increased model complexity and the risk of overfitting. Specifically, for hive M11, the
F1-scores were 0.69 for the 2-layer model, 0.70 for the 3-layer model, 0.72 for both 4- and
5-layer models, and 0.71 for the 6-layer model, followed by a marked decrease to below 0.5
for architectures with 7 layers or more. In the case of hive M12, the F1-scores were 0.85 for
the 2-layer model, 0.87 for the 3-layer model, and 0.90 for the 4-, 5-, 6-, and 8-layer models.
Slight reductions were observed for the 7- and 10-layer models (0.89) and the 9-layer model
(0.88). Figure 8 illustrates the complete neural network (NN) architecture adopted in this
study. The ReLU activation function is applied to all layers except for the output layer,
where the sigmoid activation function is utilized due to the binary classification nature of
the problem.
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Figure 7. Parameter tuning results for different models. The solid lines with dots correspond to
hive m11, and the dashed lines with x to hive m12. (a) KNN parameter tuning showing average
F1-scores across different numbers of neighbors for varying numbers of principal components (PCs).
(b) Neural network architecture tuning. (c) Neural network parameter tuning showing the impact of
epochs on performance across different numbers of PCs.

Compared to other edge-oriented architectures, the proposed approach is simpler to
implement and tune, requires minimal memory, and involves a relatively small number of
parameters. For instance, both MobileNet [42] and MCUNet [43], architectures designed
for deep-edge devices based on convolutional neural networks (CNNs) for computer
vision tasks, comprise a large number of parameters (approximately 250 k and 500 k,
respectively, while ours has approximately 1.5 k), rendering them unsuitable for our
implementation. Similarly, TinyLSTM [44], although optimized for sequential time-series
data on microcontrollers, is tailored to applications with strong temporal dependencies,
resulting in elevated memory demands that exceed the constraints of our target platform
(Arduino Zero). Lastly, while BinaryNet [45] achieves ultra-low-power inference through
binary weights and activations, it necessitates specialized training regimes and toolchains,
thereby introducing significant development overhead and tuning complexity.

For the training process, the binary cross-entropy loss function is employed, as it is
specifically designed for binary classification tasks [46]. Equation (3) defines the adopted
loss function, where yi represents the true label, ŷi denotes the predicted label, and N is
the total number of samples. Finally, NN parameter tuning is performed by evaluating
different numbers of principal components (PCs) in combination with an increasing number
of training epochs. As illustrated in Figure 7c, the optimal configuration is determined to be
six (6) PCs with 85 epochs for hive m11 and seven (7) PCs with 85 epochs for hive m12, both
with learning rate (lr) 0.001. For the other ML models and datasets, similar Pareto-optimal
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tuning approaches are applied to identify the optimal number of PCs for each dataset,
ensuring a balanced trade-off between performance and computational efficiency.

L = − 1
N

N

∑
i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)) (3)

Next, we present the experimental results for the optimal parameter set of each ma-
chine learning (ML) model across all data configurations. Figure 9 illustrates the average
F1-score for each scenario using the datasets from hives m11 and m12. The analysis is
conducted in two stages: first, we compare the performance of different data configura-
tions for each ML model, and subsequently, we compare the performance of the different
ML models.
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Figure 8. Graphical representation of adopted NN architecture.
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Figure 9. Graphical representation of average F1-score for different ML models and data configurations.

For the m11 dataset, as shown in Figure 9, the optimal configuration for KNN and Lo-
gistic Regression is config_3, yielding an average F1-score approximately 13% higher than
the lowest-performing configuration (config_0). In contrast, for SVM and NN, the optimal
configuration is config_2, demonstrating improvements of 15% and 22%, respectively, over
the worst-performing configuration (config_0). For the m12 dataset, config_2 is identified as
the optimal configuration across all ML models, resulting in an average F1-score improve-
ment of 4–8.5% compared to the lowest-performing configurations. Specifically, for KNN,
the worst performance is observed in config_0, while for all other ML models, config_1
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is the least effective configuration. As described in Table 1, config_0 includes the fewest
number of mel bands (9), providing limited options for Principal Component Analysis
(PCA), thereby making it the weakest data configuration, as the results also suggest. On the
other hand, config_2 and config_3 both include 32 mel bands, making them superior data
configurations for all use cases. Specifically, config_2 is generally the better configuration,
as indicated by the results, which is expected considering its lower resampling frequency,
leading to a more manageable dataset. For the model comparison, the optimal ML model
for the m11 dataset is the Neural Network (NN), achieving an average F1-score of 0.85,
followed closely by KNN with an average F1-score of 0.84. For the m12 dataset, KNN
emerges as the best-performing model, attaining an average F1-score of 0.97, followed by
NN with an average F1-score of 0.92.

Table 3 presents the detailed performance results of the Neural Network (NN) model
across all data configurations for both the m11 and m12 datasets. As shown, class 0
(queenright) consistently achieves higher scores compared to class 1 (queenless), which is
expected given the larger proportion of queenright data in both the training and testing
sets. For the m11 dataset, class-wise performance improves as the complexity of the data
configuration increases, with config_3 identified as the optimal configuration for both
classes, yielding F1-scores of 0.90 and 0.65 for class 0 and class 1, respectively. Notably, class
0 exhibits minimal improvement across configurations due to its already high performance,
whereas class 1 shows a significant 18% improvement. For the m12 dataset, the optimal
configuration is config_2 for both classes, with F1-scores of 0.95 and 0.84 for class 0 and
class 1, respectively. Similar to the m11 dataset, the performance of class 1 improves more
substantially compared to class 0.

Table 3. Analytic performance results for the NN classifier.

Dataset
Configuration

Hive Precision
(Class 0)

Recall
(Class 0)

F1-Score
(Class 0)

Precision
(Class 1)

Recall
(Class 1)

F1-Score
(Class 1)

Average
F1

config_0 m11 0.84 0.90 0.87 0.63 0.49 0.55 0.81
m12 0.88 0.91 0.90 0.84 0.79 0.82 0.87

config_1 m11 0.85 0.91 0.88 0.67 0.54 0.60 0.81
m12 0.91 0.95 0.93 0.83 0.71 0.77 0.89

config_2 m11 0.86 0.93 0.89 0.73 0.56 0.64 0.83
m12 0.93 0.96 0.95 0.87 0.80 0.84 0.92

config_3 m11 0.86 0.95 0.90 0.78 0.56 0.65 0.85
m12 0.92 0.96 0.94 0.85 0.76 0.80 0.90

Finally, we evaluate the adaptability of the two best-performing ML models, Neural
Networks (NN) and K-Nearest Neighbors (KNN), on previously unseen data. To achieve
this, we employ the transfer learning (TL) technique between the two hives, m11 and m12.
Specifically, we use the m12 dataset as the original (source) dataset, where the models are
initially trained as previously described, for 85 epochs for NN and with k = 21 for KNN.
Subsequently, the pre-trained models are fine-tuned on a small subset of m11 data before
being tested on the full m11 dataset to assess their generalization capability. The training
process involves using 80% of m12 data for training and 20% for testing. After applying
TL, only 0.01% of m11 data is used for fine-tuning, while 20% of the remaining m11 data is
allocated for testing.
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Table 4 presents the experimental results, demonstrating that the NN model achieves
an average F1-score of 0.91 on the original (m12) dataset and 0.82 on the unseen (m11)
dataset, corresponding to a 9.8% performance drop. In contrast, KNN reaches an average
F1-score of 0.94 on the original dataset and 0.81 on the unseen dataset, exhibiting a 13.8%
performance drop. These findings indicate that while both models exhibit adaptability to
new data, NN demonstrates a more stable performance under transfer learning conditions
compared to KNN.

Table 4. Results of the transfer learning process for the two best-performing models.

Model Average F1-Score
(Original Dataset, m12)

Average F1-Score
(New Dataset with TL, m11)

NN 0.91 0.82

KNN 0.94 0.81

3.3. Hardware Implementation

The main processing tasks during runtime are the pre-processing of the raw audio
data for the extraction of the MFCC features along with the PCA transformation and the
inference of the NN. At this point, based on the model evaluation process, the accuracy
of each configuration was tested, with config_2 demonstrating the most consistent results
between the two hives. Apart from that, it provides adequate spectral resolution (2048-point
FFT with 32 mel bands) covering frequency components in the range of 60–4000 Hz (due to
the 8192 Hz sampling rate—see Table 1), which is where the beekeeping sound phenomena
recede. However, each configuration is linked with different memory requirements and
processing times, which is important to examine due to the minimal resources of the
targeted hardware platform (Arduino Zero and arm-cortex-m0-plus processor).

Given the memory restrictions (32 KB), the feature extraction process had to be opti-
mized in terms of memory. For that matter, the FIR filter coefficients, the Hanning window,
and the mel filter banks coefficients had to be pre-calculated for each configuration along
with a look-up table for the DCT calculation. This approach is reasonable given that these
arrays are constant throughout the process and enable them to be stored into flash memory
instead of the limited RAM. For the analysis, the CMSIS-DSP optimized functions for MFCC
extraction (16-bit precision) were utilized along with its optimized matrix multiplication
functions for windowing, FIR, and PCA calculations.

For the inference, the targeted model is the one described in the previous subsection,
the NN with four FC layers (Figure 8). The KNN alternative was eventually discarded
due to the lesser transfer learning capabilities and because of the implementation nature of
such algorithms that require storing a large chunk of the dataset into memory. This NN
architecture was employed for all four configurations but with each one having a different
number of input features on their first FC layer. The extracted weights and biases from
the training process were quantized with 8-bit precision, further minimizing the memory
requirements of the models. After the quantization, the F1-score drop was negligible,
as it was <0.1 in all cases. A single scratch buffer was utilized for all four layers of the
network, and the analysis was implemented utilizing the CMSIS-NN optimized function
for FC layers, which requires storing the weight values in an interleaved format. This
ensures the weights are accessed from memory in the correct order for the internal matrix
multiplications, minimizing cache misses and optimizing processing speed. Implementing
the NN with quantized weights is associated with a drop in accuracy that was negligible in
the current implementation.

The results of the implementation process involve capturing the memory utilization
and processing time required for each configuration to run on the hardware platform.



Electronics 2025, 14, 2959 17 of 21

Table 5 presents these results for the feature extraction and inference. The feature extraction
was the most demanding both in terms of memory and processing time. Its processing time
is associated with extracting the features for a full 1 s of audio data. As a result, the window
length (which is equal to N_FFT in all cases), and the sampling rate determine the number
of processed frames in each second. This is the reason that some configurations exhibit
significantly longer processing times. The main parameter affecting memory requirements
in feature extraction is the N_FFT resolution. As indicated in Table 1, configs_0–1 and
configs_2–3 have 1024 and 2048-point resolution, respectively, leading to memory capacity
that is almost twice as large (Table 5). Focusing on config_2, which was the choice based on
the model evaluations, the processing time is reasonable, needing approximately 0.827 s to
process 1 s of measurement, as well as the memory leaves room of approximately 12 KB for
the inference and other potential utilities.

Table 5. Memory requirements and processing time for the feature extraction and the inference of the
NN model on the different dataset configurations.

Data Feature Extraction Inference

Memory (kB) Processing Time (ms) Memory (kB) Processing Time (ms)

config_0 12.272 0.408428 3.196 0.000990

config_1 13.312 0.822912 3.212 0.001113

config_2 20.576 0.827076 3.212 0.001183

config_3 20.592 1.656056 3.228 0.001316

For the NN inference, the processing times and memory requirements are significantly
lower and with minor variations between configurations since only one FC layer differ-
entiates between each case. All configurations require around 3.2 KB of memory, which
even for the most resource-intensive configurations (config_2 and config_3) utilizes a total
of around 23.8 KB out of the 32 KB of RAM. The processing times are almost negligible
compared to the feature extraction process, indicating the efficiency of the CMSIS-NN
optimized functions for FC layers and activation functions.

4. Discussion and Conclusions
Throughout this study, the whole process of the proposed approach was exhibited,

from the experimental procedure and the setup for data acquisition to the feature extraction
calculations, the feature importance, the model training, parameter-tuning and evaluation
process, as well as the hardware implementation. Throughout this whole pipeline, different
configurations of parameter values were examined, leading to the choice of config_2 with
the FC NN architecture demonstrated in Figure 8.

More specifically, through the feature extraction and the PCA processes, it was possible
to evaluate the importance of the MFCC features. As a result, it was exhibited that the
most dominant mel bands (based on the explained variance of the dataset) correspond to
the mel bands of Table 2 and are linked to the lower part of the spectrum, as suggested
by the literature, namely centered around frequencies 152, 240, 328, 504, 600, 1520, and
3176 Hz. As outlined by the model evaluation process, by considering model accuracy
on different dataset configurations, parameter values, and models, both the KNN and
NN were reasonable choices. The NN, however, exhibited a lower drop in accuracy
during the TL process compared to the KNN. This fact, along with the large memory
requirements required for implementing a KNN, which is a prohibiting factor for a low-
resource embedded system, discarded the KNN scenario.
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Apart from that, as exhibited through the hardware implementation, all configurations
were successfully deployed on the targeted platform with acceptable processing times
and memory requirements. The NN architecture proved lightweight enough, highlighting
the efficiency of the optimized arm libraries. The choice of config_2 results in a total
RAM requirement of around 24 KB, leaving enough room for additional functionalities
and utilities. Fully processing and inferencing an audio signal of 1 s duration requires
approximately 0.83 s. In a practical setting, this means that the proposed system can activate
from its sleep routine, acquire 1 s of data, spend 0.83 s to process and decide whether
the queen is absent, and then return to sleep. This scenario can be utilized successfully,
especially in off-the-grid cases and low-energy scenarios.

For future development of the proposed approach, the dataset could be enhanced by
including audio measurements of additional beekeeping phenomena (swarming, arrheno-
toky), and by considering multiple modalities apart from sound (temperature, pressure,
etc.). Apart from the MFCC features, more signal-processing techniques or deep learning
approaches for feature extraction could be explored to eventually compare the accuracy of
different feature configurations. Even for the MFCC features, different granularities and
parameters could be explored, further highlighting the underlying characteristics of bees’
sound. As for the model evaluation, while this study focused on low-level models with
minimal requirements, more advanced architectures and time series forecasting methods
could be also explored. Further evaluation under explicitly controlled acoustic interference
conditions, such as wind, rain, human activity, and insect noise, could also be incorporated
to systematically assess the model’s robustness to external acoustic disturbances.

To conclude, we propose an IoT-based system for data collection, monitoring, and
analysis of beehive conditions, utilizing multiple sensors to measure key metrics such
as acoustic signals, temperature, and humidity. Acoustic data is transformed into mel-
spectrograms and analyzed with machine learning (ML) models to detect queenless states.
We evaluated several ML models across two hives and four sampling frequencies, optimiz-
ing parameters via Pareto analysis for each dataset. Neural networks (NNs) emerged as
the best-performing model, achieving F1-scores of 0.85 and 0.92 on hives M11 and M12,
respectively, while maintaining low memory usage. The NN also generalized effectively to
unseen data through transfer learning, requiring fine-tuning on only 0.01% of new samples.
Deployment on an Arduino Zero demonstrated real-time capability, with the system ac-
quiring and processing 1 s of data records in 0.83 s before returning to sleep, suitable for
off-grid, low-power applications.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
ML Machine Learning
TL Transfer Learning
MFCC Mel Frequency Cepstral Coefficients
HHT Hilbert Huang Transform
LPC Linear Predictive Coding
STFT Short-Time Fourier Transform
DL Deep Learning
NN Neaural Networks
SVM Support Vector Machine
KNN K-Nearest Neighbor
MLP Multilayer Perceptron
RF Random Forest
CNN Convolutional Neural Networks
LSTM Long Short-Term Memory
FFT Fast Fourier Transform
DCT Discrete Cosine Transformation
PCs Principal Components
PCA Principal Component Analysis
LR Logistic Regression
TP True Positive
TN True Negative
FP False Positive
FN False Negative
lr learning rate
FC Fully Connected
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17. Andrijević, N.; Urošević, V.; Arsić, B.; Herceg, D.; Savić, B. IoT Monitoring and Prediction Modeling of Honeybee Activity with
Alarm. Electronics 2022, 11, 783. [CrossRef]

18. Ngo, T.N.; Wu, K.C.; Yang, E.C.; Lin, T.T. A real-time imaging system for multiple honey bee tracking and activity monitoring.
Comput. Electron. Agric. 2019, 163, 104841. [CrossRef]

19. Voudiotis, G.; Kontogiannis, S.; Pikridas, C. Proposed Smart Monitoring System for the Detection of Bee Swarming. Inventions
2021, 6, 87. [CrossRef]

20. Voudiotis, G.; Moraiti, A.; Kontogiannis, S. Deep Learning Beehive Monitoring System for Early Detection of the Varroa Mite.
Signals 2022, 3, 506–523. [CrossRef]

21. Mrozek, D.; Gorny, R.; Wachowicz, A.; Małysiak-Mrozek, B. Edge-Based Detection of Varroosis in Beehives with IoT Devices with
Embedded and TPU-Accelerated Machine Learning. Appl. Sci. 2021, 11, 1078. [CrossRef]

22. Ngo, T.N.; Rustia, D.J.A.; Yang, E.C.; Lin, T.T. Automated monitoring and analyses of honey bee pollen foraging behavior using a
deep learning-based imaging system. Comput. Electron. Agric. 2021, 187, 106239. [CrossRef]

23. Kulyukin, V. Audio, Image, Video, and Weather Datasets for Continuous Electronic Beehive Monitoring. Appl. Sci. 2021, 11, 4632.
[CrossRef]

24. De Simone, A.; Barbisan, L.; Turvani, G.; Riente, F. Advancing Beekeeping: IoT and TinyML for Queen Bee Monitoring Using
Audio Signals. IEEE Trans. Instrum. Meas. 2024, 73, 2527309. [CrossRef]

25. Otesbelgue, A.; de Lima Rodrigues, Í.; dos Santos, C.F.; Gomes, D.G.; Blochtein, B. The missing queen: A non-invasive method to
identify queenless stingless bee hives. Apidologie 2025, 56, 28. [CrossRef]

26. Maralit, A.D.; Imperial, A.A.; Cayangyang, R.T.; Tan, J.B.; Maaño, R.A.; Belleza, R.C.; De Castro, P.J.C.; Oreta, D.E.S. QueenBuzz: A
CNN-based architecture for Sound Processing of Queenless Beehive Towards European Apis Mellifera Bee Colonies’ Survivability.
In Proceedings of the 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE),
Jakarta, Indonesia, 16 February 2023; pp. 691–696. [CrossRef]

27. Doinea, M.; Trandafir, I.; Toma, C.V.; Popa, M.; Zamfiroiu, A. IoT Embedded Smart Monitoring System with Edge Machine
Learning for Beehive Management. Int. J. Comput. Commun. Control 2024, 19, 632. [CrossRef]

28. Kulyukin, V.; Mukherjee, S.; Amlathe, P. Toward Audio Beehive Monitoring: Deep Learning vs. Standard Machine Learning in
Classifying Beehive Audio Samples. Appl. Sci. 2018, 8, 1573. [CrossRef]

29. Ruvinga, S.; Hunter, G.; Duran, O.; Nebel, J.C. Identifying Queenlessness in Honeybee Hives from Audio Signals Using Machine
Learning. Electronics 2023, 12, 1627. [CrossRef]

30. Ruvinga, S.; Hunter, G.J.; Duran, O.; Nebel, J.C. Use of LSTM Networks to Identify “Queenlessness” in Honeybee Hives from
Audio Signals. In Proceedings of the 2021 17th International Conference on Intelligent Environments (IE), Dubai, United Arab
Emirates, 21–24 June 2021; pp. 1–4. [CrossRef]

31. Music Group Ltd. ECM8000 Technical Specifications: Ultra-Linear Measurement Condenser Microphone; Behringer: Willich,
Germany, 2013; Datasheet. Available online: https://cdn.mediavalet.com/aunsw/musictribe/ri9AgIhkSkeKygnwBCmTbQ/
QNqLVKUimkqAIilLXp9r3Q/Original/ECM8000_P0118_S_EN.pdf (accessed on 22 July 2025).

32. Cross Spectrum Labs. Microphone Frequency Response Measurement Report; Cross Spectrum Labs: Burlington, MA, USA, 2011.
Report. Available online: https://www.cross-spectrum.com/cslmics/001_mic_report.pdf (accessed on 23 July 2025).

33. Focusrite Audio Engineering Limited. Scarlett 2i2 (3rd Gen) User Guide, 2nd ed.; Focusrite: High Wycombe, UK, 2021. Available
online: https://fael-downloads-prod.focusrite.com/customer/prod/downloads/Scarlett (accessed on 22 July 2025).

34. Molau, S.; Pitz, M.; Schluter, R.; Ney, H. Computing mel-frequency cepstral coefficients on the power spectrum. In Proceedings
of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001;
Proceedings (cat. No. 01CH37221); IEEE: Piscataway, NJ, USA, 2001; Volume 1, pp. 73–76.

http://dx.doi.org/10.1098/rspb.2013.0528
http://dx.doi.org/10.3390/s20092726
http://dx.doi.org/10.3390/electronics11050783
http://dx.doi.org/10.1016/j.compag.2019.05.050
http://dx.doi.org/10.3390/inventions6040087
http://dx.doi.org/10.3390/signals3030030
http://dx.doi.org/10.3390/app112211078
http://dx.doi.org/10.1016/j.compag.2021.106239
http://dx.doi.org/10.3390/app11104632
http://dx.doi.org/10.1109/TIM.2024.3449981
http://dx.doi.org/10.1007/s13592-025-01148-1
http://dx.doi.org/10.1109/ICCoSITE57641.2023.10127739
http://dx.doi.org/10.15837/ijccc.2024.4.6632
http://dx.doi.org/10.3390/app8091573
http://dx.doi.org/10.3390/electronics12071627
http://dx.doi.org/10.1109/IE51775.2021.9486575
https://cdn.mediavalet.com/aunsw/musictribe/ri9AgIhkSkeKygnwBCmTbQ/QNqLVKUimkqAIilLXp9r3Q/Original/ECM8000_P0118_S_EN.pdf
https://cdn.mediavalet.com/aunsw/musictribe/ri9AgIhkSkeKygnwBCmTbQ/QNqLVKUimkqAIilLXp9r3Q/Original/ECM8000_P0118_S_EN.pdf
https://www.cross-spectrum.com/cslmics/001_mic_report.pdf
https://fael-downloads-prod.focusrite.com/customer/prod/downloads/Scarlett


Electronics 2025, 14, 2959 21 of 21

35. Giordani, P. Principal component analysis. In Encyclopedia of Social Network Analysis and Mining; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 1831–1844.

36. Odhiambo Omuya, E.; Onyango Okeyo, G.; Waema Kimwele, M. Feature Selection for Classification using Principal Component
Analysis and Information Gain. Expert Syst. Appl. 2021, 174, 114765. [CrossRef]

37. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009,
45, 427–437. [CrossRef]

38. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [CrossRef]
39. STMicroelectronics. MP34DT01-M: MEMS Audio Sensor Omnidirectional Digital Microphone, 3rd ed.; STMicroelectronics: Geneva,

Switzerland, 2014. Datasheet. Available online: https://www.st.com/resource/en/datasheet/mp34dt01-m.pdf (accessed on 23
July 2025).

40. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

41. Quaderi, S.J.; Labonno, S.; Mostafa, S.; Akhter, S. Identify The Beehive Sound Using Deep Learning. arXiv 2022, arXiv:2209.01374.
[CrossRef]

42. Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
[CrossRef]

43. Lin, J.; Chen, W.M.; Lin, Y.; Gan, C.; Han, S. Mcunet: Tiny deep learning on iot devices. Adv. Neural Inf. Process. Syst.
2020, 33, 11711–11722.

44. Fedorov, I.; Stamenovic, M.; Jensen, C.; Yang, L.C.; Mandell, A.; Gan, Y.; Mattina, M.; Whatmough, P.N. TinyLSTMs: Efficient
neural speech enhancement for hearing aids. arXiv 2020, arXiv:2005.11138. [CrossRef]

45. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv 2016, arXiv:1602.02830.

46. Terven, J.; Cordova-Esparza, D.M.; Ramirez-Pedraza, A.; Chavez-Urbiola, E.A.; Romero-Gonzalez, J.A. Loss functions and
metrics in deep learning. arXiv 2023, arXiv:2307.02694. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2021.114765
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1109/tkde.2008.239
https://www.st.com/resource/en/datasheet/mp34dt01-m.pdf
http://dx.doi.org/10.5121/ijcsit.2022.14402
http://dx.doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.48550/arXiv.2005.11138
http://dx.doi.org/10.48550/arXiv.2307.02694

	Introduction
	Materials and Methods
	Dataset Acquisition
	Pre-Processing—Feature Extraction
	Feature Importance
	Machine Learning Approach
	Hardware Implementation

	Results
	PCA
	ML Models Evaluation
	Hardware Implementation

	Discussion and Conclusions
	References

