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Abstract: Integrating Internet of Things (IoT) devices and machine learning (ML) tech-
niques holds immense potential for transforming beekeeping practices. This review paper
offers a critical analysis of state-of-the-art loT-enabled precision beekeeping systems. It
examines the diverse sensor technologies deployed for honeybee data acquisition, delving
into their strengths and limitations, particularly regarding accuracy, reliability, energy
sustainability, transmission range, feasibility, and scalability. Furthermore, this paper dis-
sects prevalent ML models used for bee behaviour analysis, disease detection, and colony
monitoring tasks. This paper evaluates their methodologies, performance metrics, and the
challenges involved in selecting appropriate machine learning algorithms. It also examines
the influence of sensing devices, computational complexity, dataset limitations, validation
procedures, evaluation metrics, and the effects of pre-processing techniques on these mod-
els” outcomes. Building upon this analysis, this paper identifies key research gaps and
proposes promising avenues for future investigation. The focus is on the synergistic use of
IoT and ML to address colony health management challenges and the overall sustainability
of the beekeeping industry.
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1. Introduction

The alarming decline in honeybee populations and diversity directly threatens global
food security and the stability of ecosystems. These essential pollinators, responsible for 75%
of crops consumed by humans, are dwindling due to various factors [1]. Knowledge of the di-
versity of the honeybees is vital for conservation efforts to determine how threats like climate
change would affect them [2]. One of the tools that can address the causes of this decline
is precision beekeeping/apiculture (PB/PA), defined as “an apiary management strategy
based on the monitoring of individual bee colonies to minimise resource consumption and
maximise the productivity of bees” [3]. This study focuses on the specific technologies of the
Internet of Things (IoT) and machine learning underlying these innovations. Consequently,
it does not explore commercially available solutions utilising these technologies, which are
often proprietary. These techniques collect data from select colony parameters and synthesise
it to provide insights into honeybee behaviours, indicating various occurrences within the
colony. Several studies have established important colony parameters that provide useful
insights into the honeybees’ behaviours and health. These include the following: Weight,
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which provides important information on the weight of the honey reserves; swarm depar-
tures [4]; beehive population growth and food consumption [5]; hive abandonment [6]; and
the effect of pesticides on bee colonies, nectar, and pollen variation [7]. Temperature and
humidity provide important information on metabolic processes [4], health and brood, mor-
tality, and honey production [8]. Gases, especially carbon dioxide (CO,) and oxygen, give
an indication of the metabolic processes, activity level, and health status of the colony and
mortality [4]. Vibration and acoustic signals provide information on the ability to differenti-
ate between infected and healthy bees, the presence of pests, swarming [9], and the queen’s
behaviour during swarming [4]. Images/video provides information on food demand, food
availability, colony age structure [4], and the impact of pests and pesticides [10]. A vital
prerequisite in collecting data from honeybees is to carry it out non-invasively so as not to
disrupt their natural rhythm and to obtain reliable data.

With their miniature nature and ability to collect large quantities of data with minimal
disturbance to the surroundings, coupled with the ability of machine learning techniques
to process this data and provide insights, IoT devices have been made suitable for monitor-
ing honeybees.

Figure 1 shows the general architecture of an IoT-based honeybee monitoring sys-
tem. An IoT device typically consists of (1) a microprocessor/microcontroller, which is
the main processing part of the system. It collects the data from peripheral devices con-
nected to it at set intervals. When the data have been collected, they can be sent directly
to a remote server for further processing, or the processing is performed on the micro-
controller /microprocessor, and information is sent to a remote server. (2) Sensors are
components that acquire the physical elements from the variables being acquired. (3) Com-
munication module(s) connect to the internet, and (4) energy sources power the system.
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Figure 1. Typical IoT-enabled system for honeybee monitoring.
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Machine learning (ML) is the study of algorithms and statistical models that enable
computers to perform tasks without explicit instructions based on pattern recognition and
inference [11]. It utilises statistical analysis, clustering algorithms, data transformations,
and deep learning techniques involving Artificial Neural Networks.

A dataset is required to train the model, using either supervised learning or unsu-
pervised learning, as shown in Figure 2. In supervised learning, the model is trained on
labelled data, where all the output is known prior to training. In unsupervised learning, the
model is trained on unlabelled data with unknown output [12]. These can be categorised
into classical/traditional and deep learning techniques:

i. The classical techniques are based on statistical methods and concepts to achieve
their goals, for example, Support Vector Machine (SVM) [13], K-Nearest Neighbor
(K-NN) [14], Random Forest (RF) [15], and Linear Discriminant Analysis (LDA) [14].

ii. Deep learning methods are based on Artificial Neural Networks (ANNSs) that are
composed of multiple layers of interconnected nodes (artificial neurons or units).
Examples of this type include Recurrent Neural Networks (RNN) and Convolutional
Neural Networks, composed of multiple layers of interconnected nodes [16].
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Figure 2. Machine learning techniques.

Figure 3 depicts the machine learning workflow for beekeeping applications, con-
sisting of the following five key phases: The first phase is the data acquisition, where
diverse datasets are collected from bee colonies. This includes gathering indicators such
as weight measurements, temperature readings, gas concentrations, images, sound, and
video recordings from hives. The second phase is data pre-processing, which involves
cleaning and preparing the collected data to ensure their suitability for model training.
This includes removing noise from audio recordings, annotating images and videos with
relevant labels, and formatting all types of data consistently. This step is important for
improving the quality of the datasets and enabling accurate model training. The third
phase is model training, where the pre-processed data are used to train machine learning
models that have been selected prior depending on the desired results. Data are input into
the models, and parameters are iteratively adjusted to optimise performance. This enables
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the models to identify patterns and make accurate predictions related to bee behaviour
and hive conditions, such as detecting signs of disease or predicting a swarming event.
The fourth phase is model testing, where the models undergo testing to evaluate their
performance. This involves using test datasets to assess the models” accuracy and their
ability to generalise to new, unseen data. The final phase is deployment and evaluation,
which involves deploying the trained models in actual beekeeping environments. This in-
cludes integrating the models into hive monitoring systems and validating their predictions
through laboratory analyses and field observations.
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Figure 3. Typical machine learning workflow.

There are several review papers concerning loT and machine learning techniques,
namely the following: machine learning applications to adulterated honey and honeybee
health status [17]; survey on automated or smart systems’ design, development, deploy-
ment, feasibility, and associated costs for precision apiculture [3]; overview of the state-
of-the-art computer vision and machine learning in bee monitoring [18]; comparison of
machine learning classification algorithms for their suitability in low powered solutions [19]
A review on recent developments of precision beekeeping [20] is presented but does not
examine in detail the IoT and machine learning technologies driving these developments
unlike this study.

This review paper distinguishes itself from previous works by comprehensively
analysing the specific technological components within IoT and techniques in machine
learning systems that enable precision beekeeping. It critically examines the limitations
of existing technologies and proposes novel research avenues focused on developing in-
telligent edge devices tailored for precision beekeeping applications. (An intelligent edge
device is a system designed to perform data collection, pre-processing, and decision-making
directly at the edge of a network near the source of data generation. These devices utilise
embedded computing resources, such as microprocessors or Al accelerators, to process
data locally and execute tasks without extensive reliance on cloud computing [21,22]).
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It aims to address the following questions:

(1) What parameters are being acquired by IoT-based systems for precision beekeeping,
and what insight is derived from them?

(2) What are the strengths and limitations of the devices and equipment used for
data acquisition?

(3) Which pre-processing techniques are being applied to the collected data, and how
have these affected the outcome?

(4) Which machine learning techniques have been developed, what insights have been
afforded by their application to precision apiculture, and what are their strengths
and limitations?

We conducted studies from 2016 onwards to account for advancements in IoT and
machine learning technologies and to focus on state-of-the-art devices. Additionally, the
studies must have employed an IoT-based system or machine learning algorithms for
processing honeybee monitoring data.

This paper is organised as follows: Section 2 reviews loT-based technologies used in
precision beekeeping, focusing on their components, capabilities, limitations, comparative
analysis, and feasibility for beekeeping. Section 3 discusses machine learning techniques for
honeybee monitoring, including data pre-processing, model development, evaluation, per-
formance analysis, and feasibility in honeybee keeping. Section 4 identifies key knowledge
gaps and proposes future research directions to enhance precision beekeeping technologies.
Finally, Section 5 concludes the review by summarizing the findings and emphasizing the
role of IoT and ML in addressing beekeeping challenges.

2. IoT-Based Technologies for Precision Beekeeping

Table 1 summarises these state-of-the-art loT-based systems, highlighting their in-
tended purpose and the most vital components of the system, which are the processor type,
communication module type, sensors, and purpose of the system, and also highlights the
limitations of the systems.

The systems developed to monitor apiaries generally consist of three types of data
acquisition systems: (1) Specialised instrumentation that detects one parameter; they are
accurate and precise but often need highly skilled knowledge for their operation and
are processed using proprietary software. For example, ref. [23] deployed piezoelectric
accelerometers placed in the honeybee hives to predict if the bee swarming was imminent,
placing them in the centre of the hive frames. The signals acquired were digitized by a
conditioner and sent to a software application that presented power spectra averaged over
three minutes. (2) Non-loT-based novel acquisition systems that are bulky and would
be cumbersome for the beekeeper to use; for example, [24] developed a computer vision
system to count the number of honeybees and Varroa mites and then determine the level of
infestation of Varroa mites in a beehive. A Video Monitoring Unit with multispectral LED
lights next to a camera and perpendicular to a mirror illuminated a glass passage that the
bees used to enter the beehive. The unit was connected to a computer that collected the
data. Ref. [25] developed a similar video monitoring system, and the data were acquired
by a Raspberry Pi and stored on an external storage card. Ref. [26] developed an electronic
nose to detect varroosis composed of an array of gas sensor elements that detect volatile
organic compounds. The gas was collected for one second and stored on an external storage
card. Finally, (3) IoT-based devices that process the data collected and processed locally or
transmitted and processed remotely is the focus of discussion for this review.
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Table 1. IoT-based systems for precision beekeeping.

Bee Monitoring Processor/ Sensors Communication Limitations
Event (Author) Microcontroller Module
AM23032 (DHT22) for
temperature and humidity;
BME280 for temperature,
humidity, and air pressure;
MH-RD for raindrops; MQ135, Numerous sensors are
Bee entry and exit Ardui MICS6814, and MICS5524 for included in the design
. rduino Mega 256 ) . . e
vs. environmental and ESP32 air quality, smoke, carbon Cellular Modem without justification,
parameters [27] monoxide, noise, sound and this affects the
shocks; SW-420 for vibrations; power consumption
VEML6750 for UV index;
511145 IR for InfraRed;
BH1750 for daylight intensity
and photo-resistors.
Web Camera (Logitech C920,),

Frequency of temperature sensor (SHT20), Bulky and invasive
entrance and exit of NVIDIA Jetson TX2 humidity sensor (SHT20), 4G LTE Router solution that is running
individual bees [28] rainfall sensor (WH40), and on mains

light intensity sensor (BH1750).
Raspberry Images/video

Detection of Pi-3/Raspberry Pi - notifications are not

Swarming [29] zero/ 1\$VIDI};& 5 MP Camera WiFi/LoRAWAN useful to beekeepers for
Jetson Nano swarm detection.
No night vision
Det('ectio'n qf Varroa Raspberry Pi Zero WiFi/LTE 3G, caPability,' therefore
mites inside the W version 2, 5 MP Camera - impractical. No
. . uetooth . .
hive [30] microcontroller considerations for
energy efficiency
Off-the-shelf
proprietary
Identification of Raspberry Pi 4B, components without
honeybees and Google Edge TPU 5 MP Camera Cellular Modem holistic integration

Varroa mites [31]

CO-processor

were used and
redesigned to obtain
integrated solutions.

Monitoring several

Load cells for weight
acquisition, AM23032 (DHT22)

Use of mains supply

o Raspberry Pi 3B for temperature and humidity; Zigbee, Local computer . .
colony activities [8] T6615 for carbon dioxide, that is inappropriate.
microphone
Differentiating camera; SHT?20 for
pollen from temperature, humidity; WH40 - The system is bulky
Jetson TX2 for rain level; GY-30 BH1750 WiFi and invasive.

non-pollen-bearing
bees [32]

for light intensity

2.1. Trends in IoT System Components

2.1.1. Trends in Processor Selection

Table 2 provides an overview of the processing speeds and storage capacities of
the various processors and microcontrollers evaluated in this study. Among the proces-
sors, different versions of the Raspberry Pi (Zero, 2W, 3B, 4B) were the most commonly
used [8,29-31]. The Raspberry Pi series is favoured for its balance between cost, perfor-
mance, and ease of use. In contrast, high-performance modules such as the NVIDIA
Jetson TX2 [28] and Jetson Nano [29] and the Google Edge Tensor Processing Unit (TPU)
co-processor (an application-specific integrated circuit designed specifically for machine
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learning acceleration) were selected for tasks requiring more intensive computational
power. Due to its dedicated Graphical Processing Unit (GPU) functionality, the Jetson
Nano outperformed the Raspberry Pi 3B in high-precision tasks. This capability enables the
Jetson Nano to handle parallel processing efficiently, which is crucial for applications in-
volving machine learning and computer vision [29]. However, this improved performance
comes at the cost of increased power consumption, an important consideration in apiaries,
especially in remote areas. The Arduino Mega 2560 and ESP32 were the primary choices
for microcontrollers [27].

Table 2. Development platforms for IoT systems.

Platform Processor Chipset RAM
Raspberry Pi 4B Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8 GHz 8 GB
Raspberry Pi 3B Quad-core Cortex-A53 64-bit SoC @ 1.2 GHz 1GB
Raspberry Pi 2W Quad-core 64-bit Cortex-A53 SoC @ 1 GHz 512 MB

Raspberry Pi Zero Single-core ARM1176]ZF, @ 1 GHz 512 MB
NVIDIA Jetson TX2 Dual-Core 64-Bit Quad-Core ARM Cortex®-A57 MPCore with GPU 8 GB
NVIDIA Jetson Nano Quad-core ARM Cortex-A57 @ 1.5 GHz 4GB
Arduino Mega 256 Clock speed @ 16 MHz 256 KB
ESP32 Dual-core, Clock speed @ 160 MHz 520 KB

Microcontrollers typically consume significantly less power than processors, making
them ideal for applications that do not require the acquisition or processing of videos
or images. The application’s requirements largely determine the choice between using a
processor or a microcontroller. Processors, while more power-intensive, are more suitable
for applications that involve complex tasks, such as video or image processing, where their
superior computational capabilities are required.

The selection of processing units for IoT-based systems is a critical decision that
balances the trade-offs between computational power and energy efficiency. The Raspberry
Pi series and Jetson modules offer advantages catering to different application needs. At the
same time, microcontrollers like the Arduino Mega 2560 and ESP32 provide energy-efficient
solutions for less demanding tasks.

2.1.2. Trends in Sensor Selection

The most commonly used sensing devices were temperature, humidity, acoustics,
vibration, camera, gas, and weight sensors. Temperature and humidity sensors like the
AM2302(DHT22) and BME280 [27] are crucial for monitoring environmental conditions
inside and outside the beehive, aiding in colony health and brood development. However,
their accuracy can be affected by sensor placement within the hive and the materials of
the hive structure [33]. For acoustic sensing, MEMS microphones are commonly used
to detect bee activity and monitor hive health, providing insights into behaviours like
swarming and stress. However, they are sensitive to environmental noise, affecting data
accuracy. Robust pre-processing is needed to filter out unwanted noise and enhance
reliability [19]. Vibration sensors and piezoelectric or MEMS-based accelerometers [34]
are used to monitor hive vibrations caused by bee movement or stress. These sensors
can detect subtle vibrations related to colony disturbances but may also pick up non-bee-
related vibrations, requiring filtering to retrieve relevant signals. Cameras are widely used
to detect pollen-bearing bees or Varroa mites, mostly of 5SMP resolution images. The image
resolution significantly affects both the computation resources required to process them
and the accuracy of the processing techniques [29]. Their high computational requirements,



Al 2025, 6, 26

8 of 28

dependence on lighting, and significant energy consumption limit scalability, especially
in large or remote deployments [30]. Gas sensors, such as those detecting CO; [35] and
VOCs [36], are useful for monitoring hive metabolic processes and identifying potential
issues like Varroosis. However, these sensors often require frequent recalibration [26].
Weight sensors, such as load cells, detect weight fluctuations, which can provide insights
into colony activity, nectar intake, and honey production. These sensors enable beekeepers
to track food reserves and detect swarming events. While weight sensors are relatively low
power, their performance can be affected by environmental factors such as uneven hive
placement, wind, and temperature changes, requiring proper calibration and setup [37].

2.1.3. Trends in Communication Modules

Many of the reviewed studies used cellular modems as communication modules.
Cellular modules offer wider coverage and greater reliability but at the cost of increased
energy consumption and higher operational costs. Other communication modules include
Wi-Fi-enabled devices, which are easy to integrate and provide reliable communication
in areas with existing network infrastructure. However, it is often impractical for rural
or remote beekeeping sites due to its limited range. The authors of [29] investigated the
use of a Long-Range Wide Area Network (LoRaWAN) [38]; it allows for efficient data
transmission over long distances with minimal energy usage, which is crucial for battery-
operated devices in beehives located in isolated areas. However, they are constrained in
the amounts of data they can reliably transmit. Zigbee [39] was used in some studies for
the local network of the sensors.

2.1.4. Trends in Energy Source Selection

The most common source of power deployed in the studies was a photovoltaic and
rechargeable battery [27,30] because of its sustainability property; however, optimisation
is required to maintain continuous operation during low sunlight periods. The mains
supply [28] is reliable but impractical for rural beekeeping due to limited grid access and
scalability challenges. A portable power pack [31] was found to be suitable for short-
term use but requires frequent recharging, making it less viable for beekeepers’ long-
term management.

The next section examines the bee activities monitored in the studies, including the
sensors and devices used to capture the relevant parameters, and elucidates the associated
IoT systems’ strengths and limitations.

2.2. Frequency of Entry and Exit of Honeybees

The studies majorly use photo-resistors and cameras to determine honeybees’ entry
and exit frequency. Ref. [27] developed a system for counting bees that operates on the
principle of two photo-reflective resistors per gate. The system counts a bee when both
resistors activate simultaneously, signifying a single pass. The direction of movement
into or out of the hive is influenced by the sequence in which the activation occurs, and
other parameters to acquire the atmospheric elements were also acquired. The system
includes a user interface with predictive and analytical features. Despite the study’s claim
of low power consumption and its use of solar and rechargeable batteries, it did not present
any power consumption investigations. Numerous sensors were deployed in this device
without justifying their selection concerning monitoring bee activity. This is especially
important for this solution because it has a direct implication on power consumption;
Ref. [28] presents a study that uses a large black observation box that contains a web
camera, an LED panel, and a transparent passageway to restrict the bees to the camera’s
region of visibility and prevent disruption by other bees go through. This construction
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seems to disrupt the bees’ natural rhythms, it would face scalability challenges, and its
power supply is from the mains, which is impractical for long-term monitoring.

2.3. Prediction of an Eminent Swarm or Detection of an Ongoing Swarm

Several sensing devices have been used, for example, microphones [40,41], accelerom-
eters [23], and cameras. The authors of [29] developed a system that includes a camera
module connected to a microprocessor and sent to a remote database. However, using the
camera for swarming detection is unsuitable as it would only be detected as it is happening,
which is not very useful to the farmers, who prefer to know prior so they can intervene.

2.4. Detection of Pests, Predominately the Varroa Mite

Sensing devices deployed are cameras and gas sensors; Ref. [30] developed an imaging
system for the early detection of Varroa consisting of two 5SMP cameras placed at different
angles inside the bee frames. Although no power consumption studies have been reported,
a solar panel and rechargeable battery power the system. The sole reliance on the camera
means the system becomes ineffective in case of obstruction or change in illumination.
Ref. [31] developed an image-based detection system to detect Varroa mites using a video
captured by the camera, although the study does not mention its position inside or outside
the beehive. The pre-processing was performed on the edge with the aid of a Tensor
Processing Unit. However, this system is not integrated; it is a combination of off-the-shelf
plug-and-play devices. Although the study mentions a power bank as its energy source, it
does not present a power consumption analysis.

2.5. Detection of Pollen and Non-Carrying Bees

The detection of pollen predominately used cameras to capture videos at the beehive
entrance. In their study to differentiate pollen and non-pollen-carrying bees, Ref. [32]
developed an embedded imaging system that consisted of an off-the-shelf camera at a
restricted entryway of the bee beehive that captured a video stream that was then processed
with a Jetson TX2 processor. The system was then enclosed in a black observation box and
fitted with red LED lights for illumination. An additional environment sensing module
that consisted of temperature and humidity sensors placed inside and outside the beehive,
a light sensor, and a rain level sensor connected to a Raspberry Pi 3 processor, which
transmitted the data via WiFi to a remote database where it was further processed and
displayed on a website. Additional wind information was obtained from external sources.
The setup is huge and disrupts the bees’ natural way of life.

2.6. General Colony Activity Monitoring

In [42], a system was developed that monitors weight using load cells placed in a
customised frame below the beehive, temperature, humidity, carbon dioxide, and bee
sounds using Micro-Electro-Mechanical System (MEMS) microphones. The mains supply
was the power source, which is unsuitable for remote monitoring or scalability.

2.7. Discussion

Table 3 presents a summary of the reviewed performance of the systems for IoT-based
precision beekeeping using the following metrics: accuracy, reliability, energy sustainability,
transmission range, feasibility, and scalability.
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Table 3. System performance evaluation.

Energy

Bee Monitoring Event Sustainability Feasibility Scalability
. Yes. Sensors placed so as not to
Bee entry and exit and other vs. Not available. disrupt bee rhythms and protected None.

environmental parameters [27]

from bee wax and propolis.

Frequency of entrance and exit
of individual bees [28]

Mains. Not available. Bulky and invasive. Yes. Star topology.

Not feasible. Camera module placed

Detection of swarming [29] SOlaF PVbut without inside the hive with no night vision Not shown.
studies conducted. . .
capability. Not suitable.
Detection of Varroa mites Solar.PV but 1o power Not feasible. Camera placed inside the
e . sustainability studies . . . L . Not shown.
inside the hive [30] hive with no night vision capabilities.
conducted.
Identification of honeybees and ~ Power bank. No power Not a fully integrated system. Not showr.

Varroa mites [31]

consumption analysis. Plug-and-play components.

Monitoring several colony
activities [8]

Mains connection. No
studies conducted.

Yes. Six systems connected

Yes. Sensors are non-invasive. .
in a star topology.

Differentiating pollen from
non-pollen-bearing bees [32]

Mains. No power
consumption studies
conducted.

Bulky and disruptive. Yes. Star topology.

2.7.1. Accuracy

Accuracy is important because incorrect data could lead to a misinterpretation of the
beehive’s status or activities. Considering all the studies reviewed, none of the studies
show that any accuracy tests or calibration were conducted on selected sensors, a crucial
step in ensuring confidence in the obtained results. It is important to note that none
of the studies reviewed carry out accuracy tests, for example, by benchmarking with
existing standardised systems/sensors. Moreover, the systems reviewed here utilise various
sensors, each with varying degrees of accuracy depending on their design and application.
For instance, [27,28] relied on photo-resistors and cameras to monitor the frequency of
bee entry and exit. However, environmental factors such as lighting conditions, sensor
obstruction, or changes in bee behaviour due to restrictive designs (e.g., black observation
boxes) may compromise the accuracy of these systems. The image-based Varroa detection
systems [30,31] are heavily reliant on cameras, which are prone to inaccuracies if the visual
field is obstructed or illumination varies. Although the limitations of individual sensors
may still affect them, systems that integrate multiple types of sensors, like [8] with load
cells and MEMS microphones, are likely to be more accurate as they can cross-verify data
from different sources.

2.7.2. Reliability

Reliability in sensor systems is determined by their ability to consistently provide
data over time without significant downtime or data loss. Notably, no reliability analysis
was also provided by the studies reviewed, despite some of them operating in the field
for extended periods [8]. Systems powered by mains electricity, such as those developed
by [8,28], might offer reliable operation in terms of data transmission and sensor uptime
but are impractical for remote or off-grid applications. Solar-powered systems [27,30]
present a more sustainable option for remote beekeeping but can be less reliable in areas
with limited sunlight or during periods of poor weather. Additionally, reliance on wireless
transmission introduces another point of potential failure, particularly in areas with poor
network coverage or interference.
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2.7.3. Energy Sustainability

Energy sustainability is crucial, especially for systems deployed in remote locations
where frequent battery changes or maintenance are impractical. While [27,30] report low
power consumption and solar-powered designs, the absence of detailed power consump-
tion analysis in their studies raises questions about the long-term sustainability of these
solutions, but also the practicality of solar-based systems is a concern as many apiaries
are often found in areas with vegetation cover. On the other hand, systems like those
developed by [28] that depend on mains power are inherently unsustainable for remote or
large-scale deployment. Off-the-shelf components, as seen in the Varroa detection system
by [31], raise concerns about energy efficiency, as these components may not be optimised
for low-power operation. The studies often used more sensors than the actual application
required without justification [28]; this is pertinent because of the low power consumption
that practical systems for apiculture should have. Additionally, continuous data moni-
toring and transmission to cloud platforms or local hubs impose high energy demands,
reducing device lifespan and increasing maintenance requirements. While real-time edge
processing minimises cloud dependency, it heightens local power consumption due to
computational overhead.

In Internet of Things (IoT) systems, power consumption is predominantly determined
by three main components: sensors, communication modules, and processing units. (1) Sen-
sors used for monitoring colony parameters, such as temperature and humidity, consume
energy during data acquisition, with power usage influenced by sampling rate and ac-
curacy. High-resolution sensors require more energy due to increased data processing
demands, whereas lower sampling rates can significantly reduce energy consumption.
(2) Communication modules, which transmit data to servers, cloud platforms, or nearby
gateways, account for a significant portion of energy usage. Factors such as the frequency
of data transmission and transmission range affect power demands, with long-range proto-
cols like GSM, LTE, or satellite communication consuming more energy than short-range
alternatives like Zigbee, LoRa, or Bluetooth Low Energy (BLE). (3) Processing units, such as
microcontrollers or on-device processors, also contribute to power consumption. Systems
that process data locally, for instance, through lightweight machine learning models or
rule-based algorithms, consume more energy compared to devices that transmit raw data
for remote analysis.

2.7.4. Transmission Range

The ability to transmit data over long distances is essential for beekeepers who manage
hives in remote areas. Systems that rely on WiFi [32] may face limitations in transmission
range, particularly in rural or forested areas where WiFi signals are weak or nonexistent.
Conversely, systems using cellular networks or long-range radio transmission could of-
fer greater coverage but at the expense of higher power consumption and potentially
higher operational costs. As a result, the choice of transmission technology has significant
implications for the system’s practicality and cost-effectiveness.

2.7.5. Feasibility

Feasibility refers to the practicality of implementing these systems in real-world bee-
keeping operations. Systems that require complex setups or interfere with the natural be-
haviour of bees, such as those with restricted entryways or black observation boxes [28,32],
maybe less feasible for widespread adoption. Similarly, systems that depend on a power
source, such as mains electricity, may not be viable in remote or off-grid environments.
In contrast, systems that integrate seamlessly into the hive without significant disruption
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(e.g., load cells placed under hives, as in [8]) are more likely to be adopted by beekeepers,
provided they are cost-effective and easy to maintain.

2.7.6. Scalability

Scalability is the capability to extend the monitoring system to cover multiple hives
or larger apiaries. Systems that rely on expensive or bulky components, like Jetson TX2
processors [32], may face scalability challenges due to their high cost and large size. Addi-
tionally, systems with significant power resources or complex installations are less likely
to be scalable. Conversely, systems that use cost-effective, low-power sensors and can
be easily deployable across multiple hives (e.g., those using MEMS sensors or low-cost
cameras) are more likely to scale effectively. However, scalability must also consider the
ease of data aggregation and analysis, as managing data from numerous hives can become
challenging without robust data management systems.

2.8. Comparative Evaluation of Machine Learning Inference Machines on Edge-Class Devices

The integration of edge-class devices into IoT-based systems facilitates real-time pro-
cessing in resource-constrained environments, reducing reliance on cloud infrastructure.
This section evaluates the performance of edge-class devices and ML models in preci-
sion beekeeping.

2.8.1. Lightweight ML Models on Raspberry Pi Devices

Raspberry Pi devices offer a balance between affordability and computational capa-
bility, making them suitable for running lightweight ML models, such as Support Vector
Machines (SVM) or simplified Convolutional Neural Networks (CNNs) like SSD-MobileNet
v1 [29]. While their quad-core processors enable moderate inference capabilities, their re-
liance on CPUs (Central Processing Units) rather than GPUs can hinder efficiency for deep
learning tasks. Furthermore, their higher power consumption than microcontrollers limits
their feasibility in off-grid apiaries [31].

2.8.2. Deep Learning Acceleration with NVIDIA Jetson Nano

The NVIDIA Jetson series is equipped with integrated GPUs to handle high computa-
tional loads efficiently. These devices are particularly effective for image-based applications,
such as Varroa mite detection, where deep learning models like Faster R-CNNs are re-
quired [31]. However, their enhanced performance comes at increased energy consumption
and higher operational costs, which may restrict their scalability for large apiaries and
feasibility in off-grid apiaries [29].

2.8.3. TPU-Accelerated Inference with Google Coral

The Google Edge TPU is an application-specific integrated circuit (ASIC) designed to
accelerate ML inference. It facilitated fast and efficient inference of ML models for both
bee identification and varroosis detection [31]. With its ability to process up to 4 trillion
operations per second at just 2 watts, the Coral TPU proved ideal for real-time edge
processing. This approach reduced data transmission to the cloud, limiting bandwidth
usage and ensuring real-time alerts for beekeepers. However, the proprietary nature of the
Edge TPU introduces potential challenges in system integration.

2.8.4. Microcontrollers for Energy-Constrained Tasks

Microcontrollers provide an energy-efficient alternative for tasks requiring low com-
putational power. Devices such as the ESP32 and Arduino Mega 2560 are well-suited for
deploying simple ML models (e.g., K-Nearest Neighbors, SVM) or performing non-ML
data aggregation tasks. However, their limited memory and processing capabilities make
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them unsuitable for tasks involving high-resolution image analysis or complex pattern
recognition. Notably, none of the reviewed studies had utilised them for ML-related tasks,
but the development of versions of ML techniques like Tiny ML [43] offers opportunities
for further exploration with these devices.

Table 4 summarises the comparative evaluation of these devices based on key per-
formance metrics, including latency, power consumption, accuracy, cost, and scalability.
Raspberry Pi devices demonstrate moderate latency and power consumption but are ineffi-
cient with deep learning workloads. In contrast, NVIDIA Jetson Nano provides superior
accuracy and lower latency for computationally intensive tasks, although it has higher en-
ergy requirements. Microcontrollers like ESP32 are cost-effective and highly scalable but are
restricted to lightweight inference tasks. The Google Edge TPU offers an optimal balance
between accuracy and energy efficiency, particularly for deep learning-based applications,
yet its scalability depends on cost and compatibility considerations.

Table 4. Comparative evaluation of Edge class devices.

Device Latency Power Consumption Accuracy Cost Scalability

Raspberry Pi 4B Moderate Moderate High Low Moderate
NVIDIA Jetson Nano Low High Very High High Low
ESP32 Low Very Low Moderate Very Low High
Google Edge TPU Very Low Low High Moderate High

3. Machine Learning-Based Techniques for Precision Beekeeping

Table 5 summarises the honeybee activity detected or predicted, the associated ma-
chine learning models, pre-processing techniques, and the studies’ limitations in precision
beekeeping. The majority of the studies utilise deep learning-based models, especially the
Convolutional Neural Networks and their variations. The models achieved good accuracy
between 73% [44] and 94% [41], clearly showing their potential to provide good insights
into bee activities and behaviour. Pre-processing/feature extraction techniques are pre-
dominately for the acoustic, vibrational, and image data, and studies have shown that they
significantly affect the model’s performance [45,46].

Convolutional Neural Networks (CNNs) were effective for image-based tasks, achiev-
ing accuracies as high as 94% [31] in detecting Varroa mites or 93% [44] in identifying pollen-
bearing bees due to their ability to recognize complex patterns in visual data. However,
their high computational requirements make them better suited for cloud-based processing
rather than deployment on low-power edge devices. Support Vector Machines (SVMs)
are ideal for low-power applications, such as gas detection [36] or acoustic signal classifi-
cation [19], as they are computationally efficient and perform well with smaller datasets.
This makes them a practical choice for real-time processing on resource-constrained edge
devices. Recurrent Neural Networks (RNNs) are well-suited for time-series data analysis,
such as predicting bee activity from environmental parameters like temperature and hu-
midity [27]. While RNNSs effectively capture temporal dependencies, their computational
intensity often limits their feasibility for deployment on low-power systems.

Evaluating model performance is essential to ensure their effectiveness. A common
issue observed is the inconsistent presentation of performance metrics across studies.
Providing a complete set of performance metrics allows for a more accurate comparison
of models. While most research emphasises basic performance indicators like accuracy,
precision, recall, and Fl-score, a thorough evaluation should include additional metrics to
understand the model’s capabilities. The comprehensive evaluation presentation should
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include the accuracy, recall, precision, confusion matrix, F1-score, and the Area Under the
ROC [19].

The Confusion Matrix is a table used to analyse the performance of a classification
model. It summarises the predictions” outcomes by comparing the actual and predicted
classifications. The matrix consists of four components: true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN). Each element provides insight into the
model’s accuracy and the types of errors it makes.

Table 5. Machine learning-based models for precision beekeeping.

Pre-Processing

Bee Event . Machine Learning . S
Identified/Classified Dataset Technlque/!:eature Model Evaluation Limitations
Extraction
Limited dataset and lack of
Bee entrance and 20 days—time None Iﬁzcsi\l/)[(’)?l(RlMA’ RMSE—426.9 (entry)  diverse environmental
exit activity [27] series Prophet ’ RMSE—378.464 (exit)  conditions undermine the

purpose of the study.

Beehive entrance

Inadequate discussion of the

tivity [1] 1000 images Renet-50 CNN SVM Accuracy—85% accuracy metrics of the
activity model. No field evaluations.
Other potential effects on
Prediction of an 30 mil fre vibration were not
imminent swarming oints 4 PCA DFA Accuracy—80% investigated. Numerous
event [23] P false alarms suggest the low
sensitivity of models.
Swarmin bilateral filterin mAP(SSD)—0.4223 Validation based on a
detec tiong[29] 5000 images cubic interpola t(ig(,)n SSD, Faster-CNN mAP (Faster- laboratory simulation does
p RCNN)—0.7308 not reflect real field events.
HMM
Accuracy—82.7%
F1—0.90,
2400 audio Hidden Markov Recall—0.92, The model is evaluated in a
Eminent swarming recordings MECC. LPC Model (HMM), Precision—0.89 controlled environment. The
detection [40] (122 min% ’ Gaussian Markov GMM diversity of the dataset is not
Model (GMM) Accuracy—79.78% fully explored.
F1—0.89,
Recall—0.88,
Precision—0.89
%IIZI— 093 The level of infestation is
Varroa mite TNR—d 95’ unspecified, and the model
. 30 days None SVM, K-NN ’ is unreliable due to the
detection [26] KNN . ¢ P
TPR—0.86 variance of accuracy affected
TNR—(j 95’ by different groups of bees.
Varroa mite . CNN with Precision—0.7 Limited dataset diversity
K 11,000 images None reinforcement TPR—0.94, F1 s .
detection [31] learning score—0.8 from individual hives.
. . . Synthetic images were
Varrga mite Not available Histogram, Hough Convolutional Accuracy—93% utilised and not tested in
monitoring [47] transform Neural Network .
real-world environments.
The control used for this
e study is not an appropriate
C(l)?lses;f;csgon of Fl-score—0.94 choice because it differs from
P —pollen-beari 3500 images None Tiny- Yolo v3 Precision—0.91 the one being monitored for
gs:s 1:[)?())2]en caring Recall—0.99 different reasons, e.g.,
having a healthier
population
Dectonofpolln 5 gy g TSRO Aoy SnEoe
sacs in bees [44] ! & VGG-16-CNN Recall—56% .
transform environment
Detection of Colour based (Area under the Limited dataset and diverse
pollen-bearing 1000 images segmentation, SIFT SVM bee environments not

bees [48]

algorithm,

Curve) AUC—0.91

investigated
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Table 5. Cont.

Bee Event

Identified/Classified

Dataset Technique/Feature

Pre-Processin . .
8 Machine Learning

Model Evaluation Limitations

Extraction

Detection of the
queen’s
presence [19]

360 min of audio ~ SVD, MFCC SVM, KNN NN

SVM
Accuracy—0.98
F1—0.97,
Recall—0.97
Precision—0.98
AUC—0.95
KNN
Accuracy—0.98
F1—0.98,
Recall—0.98
Precision—0.98
AUC—0.98
NN
Accuracy—0.97
F1—0.97,
Recall—0.97
Precision—0.97
AUC—0.97

Computation cost evaluation
did not factor in
pre-processing effects.

Detection of queen

presence [49]

MEFCC and mel Limited model accuracy

720 min of audio SVM, CNN AUC—0.8

spectra metrics were discussed.

Accuracy is a metric used to measure the overall correctness of a classification model.
It is the ratio of correctly predicted instances to the total cases.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

While accuracy is useful, it may be misleading in datasets where the number of
instances differs greatly between classes, a common occurrence in beekeeping.

Precision, also known as positive predictive value, measures the accuracy of positive
predictions. It is the ratio of true positive predictions to the total positive predictions (true
positives and false positives).

Precision = TP/(TP + FP)

Precision is important in scenarios where the cost of false positives is high, such as
pests or diseases.

Recall, also known as sensitivity or true positive rate, measures the ability of a model
to identify all relevant instances. It is defined as the ratio of true positive predictions to the
total actual positives (true positives and false negatives)

Recall = TP /(TP + FN)

Recall is crucial in situations where missing positive instances is costly.
F1-Score is the harmonic mean of precision and recall, providing a single metric that
balances both concerns. It is especially useful when the class distribution is imbalanced.

F1-score = 2*(Precision*Recall) / (Precison + Recall)

It provides a more comprehensive measure of a model’s performance than either
precision or recall alone.

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is a perfor-
mance metric for binary classification models. The ROC curve plots the true positive rate
(recall) against the false positive rate (1-Specificity) at various threshold settings. The AUC
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indicates the likelihood that the model will assign a higher rank to a randomly selected pos-
itive instance compared to a randomly selected negative instance. An AUC of 0.5 indicates
a model with no discriminatory ability, while an AUC of 1.0 represents a perfect model.

The next section examines the studies that have utilised different machine learning
models, presenting their outcomes and stating the limitations observed.

3.1. Bee Entrance and Exit Activity

In [27], using time series data on entrance and exit, a model was developed that
predicted the entrance and exit of bees” activities based on environmental conditions. Three
models were explored: Long Short-Term Memory (LTSM) [50], Facebook Prophet [51],
and Autoregressive Integrated Moving Average (ARIMA) [52]. Although the details of its
performance metrics were not shown, the LTSM model is reported to have missed 8.9 bees
on exit and 7.8 on entry per hour. The parameters that had the most significant impact
on movements used to develop the prediction model included temperature and relative
humidity inside and outside the hive, the occurrence of rain, air quality, the range and
intensity of daylight, UV radiation, and the transition between night and day. The analysed
data were collected over 20 days during a period that was not a flowering season so that
bees would naturally not be as active, and insufficient time meant that the developed model
would most probably not be able to accurately predict bee behaviour relative to varying
metrological conditions. Using images from the beehive entrance, Ref. [18] developed a
model that used a Resnet-50 Convolutional Neural Network without the fully connected
layers for extraction and a Support Vector Machine (SVM) for classification. They achieved
an accuracy of 85%. The dataset with 1000 images gave poor results when trained on
Resnet-50, VGG-16 [53], or DenseNet-201 [54]. The study reported the limitation of pre-
trained models led to overgeneralisation, especially when coupled with limited data, which
affected the performance of the algorithm. The algorithm/model’s performance provided
limited information, and there was no ground truth comparison to validate the accuracy of
their model.

3.2. Prediction of an Imminent Swarming Event or Detection of an Ongoing Swarming Event

In [23], using colony vibration data, a machine learning-based model was developed
based on Principal Component Analysis (PCA) [55] for dimension reduction and Discrim-
inant Functional Analysis (DFA) [56] for classification, which predicts with an accuracy
of up to 90% whether an imminent swarm is about to occur or not. However, they did
not consider several other factors that could affect the beehive’s vibrational spectra of
the beehive, such as brood levels, honeycomb levels, and infestation of pests. They also
experienced false positive alarms for all the hives that were studied, which could indicate
that their models were not sensitive or robust enough, and the hives that had experienced
power shortages were wrongly predicted, suggesting that they fell short in the practicalities
of field use; Ref. [29] detected an ongoing swarm event using images collected from the
beehive. The algorithm for detection consisted of Single-Shot MultiBox Detector (SSD) [57]
and Faster-RCNN principal Resnet [58] algorithms coupled with pre-trained models of
MobileNetV1 [59] and Inception V2 [60] models. The study achieved the highest accuracy
of 70% with Faster R-CNN and Inception V2 models. The pre-processing was performed
using bilateral filtering and cubic interpolation or super-resolution using ESDR for their
preparation as inputs. The training set used 6627 images, and 100 were used for validation.
The validation was performed in a laboratory beehive using the number of bees detected
for a population increase and clustering upon the introduction of a new queen to the colony.
A dataset of 5000 images was used for training, and the validation was performed using
a laboratory simulation that could affect the model’s performance and generalisability;
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Refs. [40,41], using 1800 datasets and the test set of 643 datasets, sought to detect a swarm-
ing event. Various feature extraction methods, such as Mel-Frequency Cepstral Coefficients
(MFCC) [61] and Linear Predictive Coding (LPC) [62], were investigated. They evaluated
the proposed system across three levels of acoustic model complexity, low, medium, and
high, defined by the number of Gaussian mixtures per state. The low-complexity models
achieved moderate classification accuracy, with the GMM model outperforming the others
at 60.50%. Precision ranged between 0.72 and 0.79, indicating a low false positive rate,
which is important for minimising incorrect swarm activity detections. However, recall
values (0.70-0.78) were comparatively lower, reflecting limited swarm detection capability.
The F1-scores (0.74-0.75) indicate a balanced but moderate performance, suitable for sce-
narios with constrained computational resources. The medium complexity models showed
an improvement in classification accuracy, with the 15-state HMM model achieving the
highest value at 75.43%. Precision and recall metrics also achieved higher precision, ranging
from 0.85 to 0.88 and recall from 0.81 to 0.89. This indicates better swarm detection capa-
bilities while maintaining low false positives. The F1-score of 0.86 for the 15-state HMM
model reflects the optimal trade-off between precision and recall, making this configuration
well-suited for IoT-based implementations with moderate computational capabilities. The
high complexity models delivered the best classification performance, with the 15-state
HMM model achieving the highest accuracy of 82.27%. Precision values (0.89) and recall
(0.91-0.92) underline the superior detection ability of these models, particularly for iden-
tifying swarm events. The highest F1-score of 0.90 was observed with the 15-state HMM
model, demonstrating its effectiveness for high-accuracy classification tasks, especially in
server-based or cloud-supported applications where computational resources are not a
limiting factor. This study showed that while higher complexity models yield superior
performance, medium complexity models offer a favourable balance between accuracy
and computational efficiency, making them a practical choice for IoT systems [11]. The
study notes the misclassification due to the effect of the bees having direct contact with the
recording devices. The author did not thoroughly investigate the diversity of the dataset,
which only included data from a single beehive and its impact on the accuracy of the model.
There were no real-world field studies to validate the results of any of their models.

3.3. Detection of Pests, Predominately Varroa Mites

In [24], a Convolutional Neural Network was developed to detect Varroa mites, and
an image processing algorithm capable of estimating the number of bees infested was
developed, which had an accuracy of 90%. Based on a video sequence with 1775 bees
and 98 visual mites, Linear Discriminant Analysis was used to train and test a classifier
from images with both bees and mites. The algorithm extracted the bee shape using
background subtraction and segmentation techniques, a morphological open and close
operation, an Implicit Shape Model, and a Scale-Invariant Feature Transform (Lowe) (SIFT).
The use of SIFT in the pre-processing could come with a high computational cost and might
not be optimal for very large datasets. This study also used a limited dataset that does
not take into consideration different environmental conditions, e.g., lighting, that might
affect the appearance of bees and mites. Ref. [30] described the detection of Varroa mites
utilising several algorithms and pre-trained machine learning models from images that
were collected by their embedded device and images from publicly available datasets. The
techniques involved in the pre-processing of the images were bilateral filtering and cubic
interpolation. The detection of the bees is performed by using the Single-Shot MultiBox
Detector (SSD) and Faster R-CNN with pre-trained models (MobileNetV2, MobileNetV3,
and RESNet-50 FPN), followed by the use of colour masking and Hough transform to
detect the Varroa mites. The training phase was carried out using 100 bees and 100 images
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of Varroa mites. The testing dataset consisted of 200 images, where half of them contained
Varroa mites and the other half did not. The authors demonstrated that using R-CNN
coupled with MobileNetV2, they could predict Varroa mites with an accuracy of 77% and
a precision of 86%. They also presented a comparison of online detection, which was
3—4 times faster than offline detection on an embedded node. However, their model was
not evaluated on some real-time incidents of Varroa mites” invasion of a beehive. Ref. [26]
reported the development of a system that utilised SVM (Support Vector Machine) and
K-Nearest Neighbors (K-NN) to detect the presence of Varroosis (disease due to Varroa
mites) using volatile gaseous elements with an accuracy of 93%. The study determined that
the number and type of gas sensors, which should be at least four, affected the performance
of the algorithm for Varroa detection. The developed device is huge and would face scaling-
up challenges that are suitable for field use. A feature was defined as the exposure of an
individual gas sensor to beehive air for two minutes. The feature vector was a combination
of the multiple gas sensors composed of the electronic nose, and a classifier was built
for each feature. The K-NN classifier was chosen because of its simplicity and ease of
deployment on the measuring system, while SVM was chosen because it was presumed
to achieve higher accuracys; it is also well suited for two classification problems like this
one. SVM showed better results than k-NN in both TPR and TNR with balanced datasets,
making it the more reliable model for accurate classification. However, it had lower TNR
with imbalanced data, suggesting it is more affected by unbalanced class distributions,
which could be the typical scenario in the apiaries. Although this study was able to
detect an infected colony, the level of infestation could not be specified. The influence
of different colony groups on performance could potentially impact future predictions
and meteorological conditions, as the study demonstrated their impact on the collected
measurements. Ref. [31] detected Varroa mites from a video stream and developed a CNN-
based ML model with an accuracy of 80%. The precision of the model was approximately
0.70, indicating a moderate rate of false positives in the detection of infected bees. The
sensitivity (TPR) was 0.94, demonstrating the model’s ability to accurately identify nearly
all infected bees within the dataset. The specificity (TNR) was 0.92, showing the system’s
capability to correctly classify non-infected bees, reducing false alarms. The F1- score was
0.80, showing a balance between detection accuracy and false-positive. The researchers
used 300 extracted images from the video stream as the training dataset for bee detection.
The researchers used a further 10,743 images as a training set for the detection of the Varroa
mite, which included 5748 pictures of healthy bees and 4995 pictures of bees with mites.
The set containing mites was insufficient, so they modified the pictures to place mites in
different places of its body. Their study showed that the size, resolution, and content of
video frames did not affect the identification of the bees; however, the resolution impacted
the detection of the mites, with lower resolution providing a worse performance. The study
reported poor prediction for bees that are close to each other. This study does not mention
how long the field evaluation lasted; it was performed on only one beehive. Although their
study identified and detected Varroa mites, it did not show if it could rule out other types
of mites that might not be harmful to the honeybees. Ref. [47] reported the development
of algorithms for the detection of Varroa mites based on a CNN with an accuracy of 93%.
Several techniques were investigated for the initial pre-processing of the images, including
Histogram, Hough Transformation, and region labelling/colour identification. The study
opted for region labelling because of its superior results for identifying mites on the bees.
This system was, however, not tested on real field conditions.
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3.4. Differentiation of Pollen-Bearing and Non-Bearing Bees

In their study to differentiate pollen and non-pollen-carrying bees, the authors of [32]
developed a deep learning model based on the Tiny You Only Look Once (YOLOV3) [63]
model to identify them from a video with an accuracy of 90%. The model achieved a
precision of 0.91, indicating the model’s ability to ensure that the majority of honey bees
identified as pollen-bearing were accurately classified, thus reducing erroneous detection.
A recall (TPR) of 0.99 exhibited the model’s ability to recognise true positives, ensuring high
detection performance. The Fl-score was 0.94, showing the model’s balanced performance
in both minimising false positive rates and maximising true positive detections. The images
to train the model were collected from different hives at different times and then divided
into a training set of 3000 and a test set of 500 images. An integrated algorithm comprising
a Kalmann and Hungarian filter was used to track and count the bees. During a five-month
field experiment, two other hives under control collected pollen using traps. The equation
used to estimate the pollen carried by the beehives is an estimated value from a beehive
different from the one where the images were obtained, potentially making the accuracy
stated unreliable. Ref. [44] developed a model based on Faster RCNN with a VGG 16
Core Network to detect the presence or absence of pollen sacs on honeybees from a video
captured at the entrance of the beehive. This model achieved a maximum sensitivity of
73%, with a measurement error of 7%, compared to another model that employed image
processing techniques and statistical analysis. In videos with relatively low numbers of
non-pollen bees, the deep learning model achieved high sensitivity (0.70). This suggests
that the model is effective at correctly identifying pollen-carrying bees when they are more
easily distinguishable from non-pollen-bearing bees. Where the number of non-pollen
bees was significantly higher (1107 compared to 46 pollen bees), the model’s sensitivity
decreased to 0.46. This decrease reflects the challenge of distinguishing pollen-carrying
bees in high-density scenarios, where the bees may overlap or be difficult to detect. The
system’s performance was evaluated in a laboratory-based beehive that might not reflect
real-world conditions. Ref. [48] detected the presence of pollen sacs on bees; to this end,
they deployed the use of segmentation and classification using SVM. The pre-processing
techniques included segmentation by CIE Lab space and the K-means clustering algorithm,
followed by morphological post-processing and dilation. Three types of images were
investigated for the training set, which consisted of 500 images with pollen and 500 without
pollen for the classification process: original RGB images, images using the b component,
and decorrelation using Principal Component Analysis. The Vector of Locally Aggregated
Descriptors (VLAD) [64] was used to compute the descriptors, followed by SVM to classify
the descriptors. Three methods were evaluated for classification: The non-processed
images achieved an AUC of 0.8700 and a confusion matrix indicating 86 true positives
(TP) and 14 false positives (FP) with 12 false negatives (FN) and 88 true negatives (TN).
The segmented images achieved a higher AUC of 0.9100, with 91 TP, 9 FP, 9 FN, and
91 TN, indicating that segmentation significantly improved classification performance. The
decorrelated images achieved the highest AUC of 0.9150, with 90 TP, 10 FP, 7 FN, and 93 TN.
This suggests that decorrelation further enhanced classification accuracy, especially in
distinguishing between pollen-bearing and non-pollen-carrying bees. There was significant
difficulty in identifying bees too close to each other and at the boundary of the recording.
One of the challenges of using K-clustering is that you obtain different results based on the
optimisation parameters used. The use of VLAD can be computationally expensive and
requires careful parameter tuning for optimal performance.
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3.5. Detection of Queen Presence in the Beehive

The authors of [19] reported the detection of the queen bee by investigating the per-
formance of four machine learning models: SVM, K-Nearest Neighbors (KNN), Random
Forest (RF), and CNN. The study reports that SVM had the best results, with an accuracy
of 95%. A dataset was acquired from five beehives from their setup for 15 days. The
pre-processing initially used Single Value Decomposition (SVD), and no significant pat-
terns were noticed. They then extracted features using MFCCs, trained the model using
720 samples, and evaluated it using K-cross validation. The study reported that SVM and
RF provided the highest recall, which is vital for identifying colonies with critical issues
(e.g., queenless colonies). This ensures that colonies in distress are correctly identified for
intervention, minimising the risk of missing out on failing colonies. Models with higher
precision, such as SVM (0.92) and KNN (0.89), are vital for preventing false positives,
especially in large colonies where there are many healthy bees. This reduces unnecessary
interventions and allows for better resource allocation. SVM with an AUC of 0.94 offers
better overall classification performance, making it more reliable in real-world monitoring
systems where the threshold for classification might need to be adjusted dynamically. The
computational efficiency of these models is crucial for real-time monitoring on devices
like Raspberry Pi (RPi 3), especially in autonomous beekeeping systems. Although CNN
showed high performance, SVM and KNN were more computationally efficient for use on
an RPi 3, where processing power is limited. This ensures that real-time colony monitoring
remains feasible. Although this study sought to determine the computation resources
required for the learning and classification of the RPi3, it did not include the pre-processing,
feature extraction, and data splitting time. A relatively small and similar, unbalanced
dataset was used that could affect the representativeness and generalisation of the beehive.
The developed models were not tested on real field conditions to validate them. Ref. [49]
reported the development of SVM and CNN-based models with 80% and 90% accuracy,
respectively, to detect the presence of the queen bee. The study pre-processed the data using
MEFCCs, Empirical Mode Decomposition (EMD), and the Hilbert Huang Transform (HHT).
The AUC scores show the ability of both models to distinguish between the different colony
states. However, the models showed challenges with generalization to unseen hives, which
is critical in practical beekeeping applications where new hives might be encountered
regularly. The SVM model was more prone to overfitting, while the CNN showed slightly
better generalization ability, suggesting that CNNs may be more adaptable for deployment
in real-world beekeeping scenarios. Both models struggled with unbalanced datasets and
hive-independent splits, highlighting the need for better datasets in practical beekeeping.
Ensuring that the training set includes a representative sample of hives from different
environments and populations is crucial to improving model robustness and reliability.
However, the study did not provide any explanations or interventions and apart from
the AUC, no other metrics were discussed to gain a comprehensive understanding of the
model’s performance.

3.6. Discussion

The discussion focuses on evaluating the current state of research in precision bee-
keeping with an emphasis on aspects such as the choice of machine learning algorithms,
the impact of sensing devices, computational complexity, dataset limitations, validation
procedures, evaluation metrics, and the impact of pre-processing techniques on machine
learning models’ outcomes.
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3.6.1. Current State of Machine Learning Algorithms

Figure 4 illustrates that the reviewed studies demonstrate an adoption of both classical
machine learning models and deep learning models to determine honeybee activities. The
most frequently used models were CNN and SVM. The choice between these algorithms
often depends on trade-offs between computational complexity and accuracy. For instance,
refs. [24,26] show that classical models like SVM can achieve high accuracy with lower
computational demands, making them suitable for resource-constrained environments.
However, the emergence of deep learning models such as those used by [30,31] offers
improved accuracy and the ability to handle more complex patterns, although with higher
computational costs and longer training times.

Machine Learning Models for Honey bee Activities
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Figure 4. Machine learning models for honey bee activities.

3.6.2. Impact of Sensing Devices

The authors of [31] highlighted the impact of image resolution on the performance
of machine learning models in detecting Varroa mites. Their findings indicate that lower
image resolutions can significantly degrade the model’s ability to detect mites, while
high-resolution images improve detection but require more computational resources. This
trade-off between image quality and processing speed is vital for real-time applications,
where delays in processing could lead to missed detections or false positives. The study
also pointed out challenges in accurately identifying bees in close proximity, a common
issue in densely populated hives, further complicating the task of mite detection.

3.6.3. Impact of Pre-Processing Techniques

The pre-processing stage is critical in determining the effectiveness of machine learn-
ing models, particularly in handling the noisy and dynamic environment of beehives.
Techniques such as those used by [24], including background subtraction, segmentation,
and morphological operations, are essential for obtaining relevant features and improving
model accuracy. However, these methods can introduce significant computational over-
head, particularly when dealing with large datasets or high-resolution images. The choice
of pre-processing methods, such as SIFT in [24] or bilateral filtering and cubic interpolation
in [30], directly impacts the model’s performance, especially in environments with variable
lighting and background conditions.
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3.6.4. Evaluation Metrics

The studies reviewed typically focus on basic evaluation metrics such as accuracy and
precision, with limited attention given to more comprehensive measures that could provide
deeper insights into model performance. For instance, metrics like Balanced Accuracy
and Matthews Correlation Coefficient (MCC) are rarely reported despite their importance
in assessing models trained on imbalanced datasets, a common scenario in beekeeping.
Furthermore, while Area Under the Curve (AUC)-ROC and precision-recall curves are
powerful tools for evaluating the trade-offs between different types of errors, they are often
overlooked in favour of simpler metrics. The omission of these more detailed evaluations
limits the ability to fully understand a model’s strengths and weaknesses, particularly
in diverse and unpredictable beekeeping environments. The reliance on a narrow set of
evaluation metrics presents several challenges:

e Incomplete performance assessment: Basic metrics like accuracy provide only a partial
view of a model’s effectiveness. For instance, a high accuracy rate might obscure the
model’s poor performance on minority classes or its susceptibility to false positives.
This can be critical in beekeeping, where misclassification of pests or other anomalies
could lead to significant hive losses.

e  Lack of generalizability: Models developed and tested under controlled conditions
may not perform well in real-world environments, particularly those with varying
meteorological conditions, different apiaries, or diverse bee populations. Without
rigorous testing across multiple conditions and datasets, the generalisability of these
models remains uncertain.

3.6.5. Computational Complexity and Resource Utilization

The authors of [24] utilized SIFT in their pre-processing pipeline, which, while effec-
tive, is computationally intensive. Such complexity might make it difficult for real-time
processing and scalability, especially when dealing with large datasets or deploying on
resource-constrained devices. Refs. [30,31] utilised deep learning models like Faster R-CNN
and CNNs, respectively. While these models offer high accuracy, they require significant
computational resources, which could be a barrier for in-field applications where power
and processing capabilities are limited.

3.6.6. Dataset Limitations

Notable among the studies is the reliance on limited and sometimes unbalanced
datasets. For instance, [24,30] trained their models on datasets that may not encompass
the variability present in different environmental conditions, such as lighting variations
or diverse hive structures. Ref. [31] encountered a lack of enough data for Varroa mite
images, leading them to artificially augment the dataset by placing mites on bees in images.
While data augmentation is a standard practice, it may not capture the complexity of
real-world scenarios.

3.6.7. Validation Procedures

Several studies lacked extensive field validation. Refs. [30,47] did not test their models
under real-world conditions, which raises concerns about the models’ robustness and
adaptability to varying environmental factors. Ref. [26] employed gas sensors and machine
learning classifiers like SVM and K-NN to detect Varroosis. Although achieving high accu-
racy, the system’s large size and the lack of field validation limit its practical applicability.
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4. Knowledge Gaps and Recommendations for Further Research

IoT technologies coupled with machine learning techniques have shown great po-
tential in improving the beekeeper’s management of his apiaries through the detection
of queen bee presence, pests, swarming detection and prediction, pollen-bearing bees
detection, and ambient colony conditions monitoring, which are important indicators of
the colony’s health (Tables 1 and 5).

Integrating IoT technologies with machine learning in apiculture has demonstrated
significant potential in enhancing beekeeping practices. However, several areas remain
unexplored. Addressing these gaps will be key to realising the full potential of precision
beekeeping systems. Below are suggested directions for future research.

4.1. Integration of IoT Systems and Machine Learning

While there is substantial research on the application of machine learning algorithms
in precision beekeeping, there is a noticeable gap in exploring integrated IoT systems. The
success of machine learning models in this domain depends not only on the algorithms
themselves but also on how effectively they are integrated with IoT systems for data acqui-
sition and processing. Current studies often overlook the complexity and computational
demands of these models when deployed on IoT devices, especially in resource-limited
environments like remote apiaries. Future research should focus on the following areas to
achieve intelligent edge devices:

e  Optimisation of machine learning models: research should focus on creating
lightweight, energy-efficient versions of machine learning models that can perform
effectively on low-power devices without neglecting accuracy.

o  Development of real-time data processing capabilities: designing systems that can
process and analyse data in real-time directly at the hive, reducing latency and depen-
dence on cloud computing.

4.2. Power Sustainability and Enerqy Harvesting

The concern of power sustainability is critical, yet it is inadequately addressed in
the reviewed studies. Effective and continuous monitoring of beehives, especially in re-
mote locations, requires IoT systems that are not only power-efficient but also capable
of operating independently over extended periods without frequent maintenance or bat-
tery replacements. To ensure continuous monitoring, future research should focus on
the following:

e Including a detailed analysis of power consumption, considering the major compo-
nents that contribute to the power consumption and using the formula stated as

Ptotal = PSensor + Ptransmissiun + PProcessing

where:

i Pgeps0r 1s the power required to acquire data.

ii. Ptransmission 1S the power required for data transmission.

iii. Ppyocessing i the power consumed during local data processing.

e  Optimising sensor power usage through techniques such as dynamic sampling that
adjusts the frequency of data collection based on environmental conditions or prede-
fined thresholds. For instance, sensors can increase sampling rates during periods
of high variability, such as fluctuating hive temperatures, and decrease them during
stable conditions.
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e  Selection of energy-efficient sensors designed for precision monitoring, such as MEMS-
based temperature or humidity sensors, which consume minimal power while main-
taining accuracy.

e  Reduction in communication energy costs through the use of low-power commu-
nication protocols, such as LoRaWAN, Zigbee, or Bluetooth Low Energy (BLE), for
short-range, energy-efficient transmission. For long-range communication, protocols
like Narrowband Internet of Things (NB-1oT) [65] or Long Term Evolution Machine
Type Communication(LTE-M) [66], optimised for IoT applications, can reduce power
usage and data compression before transmission to reduce the volume of data sent,
significantly minimising energy costs associated with the communication.

e  Performing data analysis locally on IoT devices with lightweight machine learning
models can ensure computational tasks consume minimal energy and reduce the need
for frequent data transmissions to cloud servers, saving energy.

e  Leveraging hardware accelerators or application-specific integrated circuits (ASICs) tai-
lored for IoT operations. These specialised chips are designed to handle IoT workloads
while consuming significantly less energy compared to general-purpose processors.

4.3. Comprehensive Field Testing and Dataset Diversity

Most of the existing studies rely on limited datasets collected from a small number of
beehives over short periods. These datasets often lack the diversity needed to determine
the complex and dynamic nature of bee colonies and their environments. Consequently, the
models trained on these datasets may not generalize well to different conditions, leading to
suboptimal performance in real-world applications.

Many studies rely on limited datasets, which may not represent the full range of condi-
tions encountered in real-world beekeeping. Future research should consider the following:

e Expand data collection across a range of environmental conditions, including varying
lighting (from daylight to low light), temperature fluctuations, seasonal changes, and
weather conditions (e.g., rain, humidity). For acoustic classification, models should
be tested under different ambient noise levels, such as windy or rainy conditions, to
assess their ability to distinguish hive sounds. Additionally, validation should consider
hive densities, bee population sizes, and hive designs, as these factors can influence
environmental variables like temperature gradients and sound patterns. Models
should also be trained and tested across multiple apiaries with varying environmental
conditions and management practices to ensure generalizability and minimize site-
specific overfitting.

e Creating and publishing large, diverse datasets with the research community to
facilitate the development of more generalisable machine learning models.

4.4. Challenges with Existing Modalities and the Need for Multimodal Approaches

The current research often relies on a single modality, such as video, gaseous composi-
tion, or acoustics, to monitor and detect various aspects of bee colony health. However,
each of these modalities presents specific challenges: Video and image data; while video-
based monitoring is effective for certain tasks, such as detecting pollen-bearing bees or
monitoring the entrance of hives, it has limitations. Pests such as Varroa mites may hide
in areas not visible to cameras, and video data are computationally intensive in storage
and processing. Gaseous composition is useful in determining conditions like Varroosis,
but the sensors require constant resetting with clean air, making them obtrusive and less
practical for continuous monitoring. Additionally, the complexity of gaseous compositions
influenced by varying environmental conditions poses challenges for accurate analysis.
Acoustics and vibration provide valuable insights into the health and behaviour of bees
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but are affected by low Signal-to-Noise Ratios (SNR), making data processing complex and
potentially less reliable.

To overcome these challenges, future research should explore multimodal approaches
that combine several parameters. This could be accomplished by the following;:

e  Developing multimodal monitoring systems: integrating multiple sensing modalities,
such as combining video, acoustics, temperature, and gaseous elements, to create a
more comprehensive and reliable system.

e  Creating fusion algorithms: developing techniques that can effectively combine data
from different sensors, enhancing the accuracy and reliability of the system.

e  Optimising data processing techniques: addressing the computational challenges of
processing multimodal data, ensuring the system remains efficient and scalable.

e Investigating specific use cases for each modality: determining the strengths and
weaknesses of each modality and exploring task-specific applications to determine
which combinations of modalities are best suited for specific tasks, such as pest
detection, swarming prediction, or hive health monitoring.

4.5. Scalability and Practical Deployment

The scalability of IoT-based precision beekeeping systems remains a significant chal-
lenge. Many of the existing solutions are developed and tested on a small scale, with
limited consideration for how they can be scaled up for larger operations. Moreover,
the practical deployment of these systems in diverse environments, including rural and
under-resourced areas, has not been sufficiently explored. Future research should focus
on developing scalable solutions that are cost-effective and easy to deploy across multiple
hives and apiaries. This could involve the following;:

e Improving connectivity: developing systems that can operate in remote areas with
limited internet connectivity, potentially through low-bandwidth communication
protocols like LoRaWAN.

e  Feedback loops for system improvement: establishing mechanisms for collecting user
feedback to continuously improve the systems based on real-world experiences.

4.6. Recommendation for Comprehensive Evaluation

To advance precision beekeeping and ensure the practical applicability of machine
learning models, future research should adopt a more comprehensive evaluation framework
that includes the following;:

e  Balanced Accuracy and Matthews Correlation Coefficient (MCC): these metrics should
provide a more nuanced assessment of model performance, particularly in handling
imbalanced datasets, which are common in real-world beekeeping scenarios.

e Area Under the Curve (AUC)-ROC and precision-recall curves: these tools should
be employed to evaluate the trade-offs between different types of errors (e.g., false
positives vs. false negatives) and to assess the model’s sensitivity to various thresholds.

o  Computational efficiency: it is crucial to report metrics such as inference time, memory
usage, and overall resource utilization to assess the feasibility of deploying these
models in real-world, resource-constrained settings like remote apiaries.

5. Conclusions

The integration of IoT technologies and machine learning techniques has shown signif-
icant potential in enhancing beekeeping practices. These advancements have enabled the
detection of queen bee presence, pests, swarming, pollen-bearing bees, and the monitoring
of ambient colony conditions, which are crucial indicators of colony health. However, the
current state of research predominantly focuses on the application of machine learning
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algorithms for the analysis of apiculture-related datasets, with less emphasis on the devel-
opment of robust IoT systems. The complexity and computational demands of machine
learning models directly influence data acquisition strategies, making the integration of
these systems a significant challenge. Future research areas could focus on the development
of intelligent IoT-based edge devices, power sustainability solutions, investigation of the
effect of long-term deployment of sensor modules in beehives, comprehensive evaluation
using diverse datasets comprised of data collected from different apiaries over different
seasons, exploration of scalable and practical systems, development of a multimodal ap-
proach to mitigate the limitations of the singular modalities, and obtaining more accurate
and precise results to enhance apiary management and contribute to the sustainability of
bee populations.
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