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Abstract

Thermoregulatory fanning behavior in honeybees is a vital indicator of colony health and
environmental response. This study presents a novel dataset of 18,000 annotated video
frames containing 57,597 instances capturing fanning behavior at the hive entrance across
diverse conditions. Three state-of-the-art single-shot object detection models (YOLOVS,
YOLOL11, YOLO12) are evaluated using standard RGB input and two motion-enhanced
encodings: Temporally Stacked Grayscale (ITSG) and Temporally Encoded Motion (TEM).
Results show that models incorporating temporal information via TSG and TEM signifi-
cantly outperform RGB-only input, achieving up to 85% mAP@50 with real-time inference
capability on high-performance GPUs. Deployment tests on the Jetson AGX Orin platform
demonstrate feasibility for edge computing, though with accuracy—speed trade-offs in
smaller models. This work advances real-time, non-invasive monitoring of hive health,
with implications for precision apiculture and automated behavioral analysis.

Keywords: beehive monitoring; thermoregulatory fanning behavior; convolutional neural
networks; Jetson GPU

1. Introduction

Monitoring the condition of honeybee colonies is essential for ensuring pollination
services, ecological sustainability, and the productivity of beekeeping operations. One of the
most practical, non-invasive strategies for behavioral observation is the continuous visual
monitoring of the hive entrance, which serves as a vital interface between the internal
and external environments of the colony [1,2]. The entrance not only enables airflow,
communication, and the exchange of foragers but also provides observable indicators
related to the health and status of the hive.

Thermoregulatory behaviors such as wing fanning, which bees perform by vibrating
their wings while remaining stationary, play a crucial role in regulating hive temperature
and humidity [3,4]. This ventilation process is critical for brood development, pheromone
distribution, and overall colony homeostasis. Visual signs of fanning behavior at the
entrance offer valuable insights into the internal conditions of the hive, including thermal
stress, brood care demands, and colony coordination [5,6]. Moreover, fanning frequency
and body posture have been shown to respond to environmental variables and even
pesticide exposure [7], making it an informative indicator of external and internal stressors.

Traditional hive inspections involve opening the hive, which can be disruptive and
stressful for the colony. In contrast, automated visual monitoring at the entrance allows
beekeepers to infer internal hive dynamics without physically intervening [8]. Several
studies have demonstrated the potential of machine vision to detect and classify behaviors
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such as foraging, guarding, and robbing at the entrance [9,10]. This capability could
be extended to thermoregulatory fanning using advanced detection models capable of
capturing subtle motion signals like wing flapping.

Recent developments in deep learning have made it feasible to automate the recog-
nition of specific honeybee behaviors from video data. By leveraging single-shot object
detection frameworks such as YOLO and adapting them for spatiotemporal analysis, it
becomes possible to detect behaviors that are characterized not just by static postures
but also by dynamic wing or abdominal movement [11,12]. Advances in zero-shot object
detection and automated labeling workflows have further demonstrated the potential of
foundation models for behavior detection in specialized visual domains [13]. In parallel,
hyperspectral imaging has also emerged as a promising tool for detecting parasites like
Varroa destructor, offering an alternative spectral-based approach for health monitoring of
bees [14]. Such systems offer the potential for real-time, edge-capable monitoring, reducing
the labor demands on beekeepers and improving responsiveness to colony needs.

Multiple types of bee behavior are expressed at the entrance ramp, including fanning,
foraging, guarding, trophallaxis, and swarming [9]. Accurately identifying these behaviors,
especially those related to thermal regulation, requires comprehensive datasets and robust
detection models capable of operating under varying lighting conditions, occlusions, and vi-
sual similarity between behavioral classes. In this study, we focus on fanning detection as a
representative behavior that is both functionally significant and visually subtle, requiring
temporal modeling for accurate identification.

Our main contributions are as follows:

* A new dataset collected, annotated, and publicly provided for detecting fanning
behavior of honeybees at the hive entrance. It contains:

- 4 different beehives, 18,000 annotated frames, with 84% containing fanning be-
havior and 16% without visible fanning patterns.

- 57,597 instances of fanning bees, including a wide range of postures, occlu-
sions, body orientations, spatial locations, shadow contrasts, and degrees of
wing visibility.

¢  Evaluated state-of-the-art object detection models for detecting fanning behavior in
honeybees using three input encoding strategies: standard RGB frames, Temporally

Stacked Grayscale (TSG), and Temporally Encoded Motion (TEM).

* Conducted experiments on both high-performance (RTX 4080 Super, 16 GB) and
edge computing platforms (Jetson AGX Orin, 64 GB) to assess model efficiency
and deployability.

2. Related Works

Recent advances in computer vision and sensing technologies have opened new
avenues for the automated monitoring of honeybee behavior. A number of studies have
explored video-based analysis and Al systems that support the detection of specific bee
activities, laying a strong foundation for the development of automated fanning detection.

2.1. Automated Fanning Detection

Siefert et al. [15] provided a detailed qualitative and quantitative account of honeybee
behavior within the hive using long-term video analysis. Their innovative side-view setup
enabled continuous observation of subtle behaviors such as thermoregulation, brood care,
and trophallaxis, demonstrating the value of visual tracking in constrained environments.
Similarly, Crawford et al. [16] introduced a multi-camera observational methodology for
capturing rare behaviors, including air-circulatory and Nasonov pheromone fanning, at the
hive entrance. They emphasized the feasibility of using video data to quantify fanning
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behavior and outlined potential integration with Al systems. This insight directly aligned
with the goals of this study.

High-speed video approaches have also been employed to detect wing-flapping ac-
tivity associated with bee flight. Shimasaki et al. [17] analyzed pixel-level brightness
fluctuations in 500 fps recordings to extract temporal frequency components of flying bees.
Their later work with Li et al. [18] integrated YOLOv8 with K-Nearest Neighbors to achieve
real-time flapping detection at 1000 fps, underscoring the potential of frequency-based
motion analysis. Though these methods focused on flight, the technical principles extend
to fanning behavior, which involves similar repetitive wing movements.

Several studies have demonstrated the feasibility of object detection and tracking
for behavioral monitoring at hive entrances. Chiron et al. [19] presented a stereo vision-
based system for the 3D tracking of honeybees using Kalman filtering and Global Nearest
Neighbor data association. Their hybrid segmentation method, incorporating both intensity
and depth images, showed robust performance in cluttered, outdoor conditions. Likewise,
Svec and Ganguly [20] applied YOLO11 for classifying worker roles (e.g., pollen carriers)
in hive entrance footage. While not focused on fanning, these systems establish a technical
baseline for real-time, non-invasive monitoring of complex bee behaviors using vision-
based models.

Biomechanical analyses offer critical insight into the kinematics of fanning and its
distinction from other wing-related behaviors. Peters et al. [3] compared ventilatory fanning,
Nasonov scenting, and hovering flight using high-speed video and flow visualization. They
reported that fanning is characterized by lower flapping frequencies (174 Hz), larger stroke
amplitudes, and a distinct stroke plane angle, differentiating it from other wing-flapping
behaviors. Yang et al. [21] and Seko et al. [22] documented defensive behaviors such as
fan-blowing and wing-slapping, respectively, that also involve wing movement but serve
purposes like predator deterrence. The visual similarity between these behaviors and
thermoregulatory fanning underscores the need for spatiotemporal models that can capture
fine-grained motion dynamics. Oliver et al. [7] further showed that pesticide exposure
subtly alters fanning frequency and duration, emphasizing the importance of detecting
nuanced behavioral changes.

Understanding the collective and social dynamics behind fanning helps contextualize
why its detection is challenging. Cook et al. [5] examined how group size and the rate of
environmental temperature change influence fanning onset, showing that bees in larger
groups begin fanning earlier during rapid heating. Kaspar et al. [6] highlighted the influence
of experienced individuals in triggering fanning among workers, indicating that behavioral
contagion can modulate activation thresholds. Egley and Breed [23] described the flexible,
non-age-linked nature of fanning, revealing that bees dynamically switch tasks based on
ambient stimuli. Peters et al. [24] modeled collective ventilation, showing that bees spatially
organize into inflow and outflow clusters at the hive entrance to maximize cooling efficiency,
an emergent pattern crucial for group-level thermoregulation. These findings highlight
that fanning is not only visually subtle but also socially and environmentally adaptive.

Beyond vision-based approaches, researchers have also explored indirect sensing
methods to monitor fanning. Lima et al. [25] demonstrated that increased sound intensity
levels, captured via a smartphone app, correlate with thermoregulatory fanning inside
the hive. This non-invasive acoustic proxy validates the potential of integrating passive
sensing for behavioral inference. Stabentheiner et al. [4] and Bourrel et al. [26] investigated
thermal homeostasis in colonies, noting that behaviors like fanning are initiated at specific
temperature thresholds and modulated by hive configuration. Their findings support the
development of sensor-guided detection models that consider environmental triggers for
behavioral activation.
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These studies reveal a rich spectrum of biological, mechanical, and technological
insights relevant to automated fanning detection. However, while prior research has
established strong foundations in both video analysis and behavioral ecology, a gap remains
in unifying these domains for the specific, automated recognition of thermoregulatory
fanning at the hive entrance. This work addresses that gap by evaluating state-of-the-art
visual detection models trained explicitly for this purpose.

2.2. Spatiotemporal Modeling

Given the dynamic and often subtle nature of fanning behavior, its accurate identifi-
cation necessitates spatiotemporal modeling approaches that move beyond static image
analysis. Recent advances in video-based action detection provide valuable frameworks
for addressing this challenge through the integration of temporal context, motion encoding,
and actor tracking.

Luo et al. [27] introduced TrAD, a two-stage tracking-based spatiotemporal action
detection framework that prioritizes video-level consistency. Their system generates action
track proposals across video frames using a YOLOv7-based tracker, followed by track-
aligned pooling and motion-consistent proposal scaling. This design not only improves
classification accuracy but also reduces computational overhead by 58% compared to
SlowFast, showcasing the benefits of incorporating consistent motion paths and temporal
structure, principles applicable to capturing sustained wing movements during bee fanning.

Zhu et al. [28] developed YOWOV3, a lightweight real-time spatiotemporal network
designed for deployment on edge devices. The model combines a YOLOvS8-based 2D spatial
backbone with a lightweight 3D temporal extractor and a channel fusion and attention
convolution mix module. It avoids the computational load of 3D convolutions by using a
temporal shift module to maintain temporal sensitivity. This balance between efficiency
and temporal expressiveness aligns with the design constraints of embedded honeybee
monitoring systems.

Telegraph and Kyrkou [29] proposed a spatiotemporal object detection method for
aerial vehicle tracking that extends YOLOv5 with temporal attention and frame differ-
encing. Their model achieved over 16% performance gains by highlighting motion areas
and suppressing static regions, a strategy directly related to our use of temporally en-
coded motion input, which enhances detection of subtle fanning behavior via temporal
pixel differencing.

Alzahrani et al. [30] presented YOLO-Act, a unified spatiotemporal action detection
framework extending YOLOVS. By extracting the first, middle, and last frames of an action,
and combining them through late fusion, the model captures key temporal dynamics with
minimal computational load. YOLO-Act outperformed transformer-based approaches
such as LART on the AVA dataset, highlighting the effectiveness of temporally structured,
low-overhead input encodings, complementary to our temporally stacked grayscale and
difference-based representations.

Peng et al. [31] proposed a real-time anomaly detection system using a two-stream
spatial-temporal transformer network. Their method integrates pose estimation, object
interaction modeling, and transformer-based sequence encoding to identify abnormal
behaviors in industrial environments using CPU-only setups. Their emphasis on efficient
temporal modeling through motion information and acceleration vectors resonates with our
goal of detecting subtle wing vibrations and fanning patterns using lightweight, motion-
enhanced visual representations.

These studies demonstrate a growing trend toward compact, high-resolution tem-
poral modeling for dynamic action recognition. They collectively inform the architec-
tural and representational strategies employed in this work, including temporal stacking,
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pixel-wise differencing, and motion-emphasized feature design for detecting honeybee
fanning behavior.

3. Materials and Methods

To support the automated identification of thermoregulatory fanning behavior, a com-
prehensive experimental framework was established. This section outlines the dataset
collection process, input encoding strategies, model architectures, and evaluation met-
rics used throughout the study. The methodology is designed to ensure reproducibility,
enable fair model comparisons, and reflect practical deployment scenarios for both high-
performance and edge computing platforms.

3.1. Dataset

A dataset was created from video recordings of hive landing boards at a local api-
ary in the Vilnius district during the 2023 beekeeping season. A stationary camera
mounted approximately 30 cm above the landing boards captured footage at a resolution of
1920 x 1080 pixels and 30 fps. The choice of 1920 x 1080 resolution at 30 fps balances visual
detail and manageable processing load. This resolution ensures sufficient spatial granularity
for detecting wing movement while allowing real-time frame extraction and compression,
especially critical for the edge-deployment scenarios later discussed in Section 5. Since the
quality of captured frames affects detection accuracy, especially under varying lighting
or motion blur conditions, selecting or preprocessing frames with higher visual quality
can be beneficial [32]. Recordings were made under both sunny and cloudy conditions to
capture a range of environmental variability. Individual frames were extracted from the
raw video for annotation. The dataset comprises high-resolution images collected from four
different beehives, each corresponding to a colony exhibiting fanning behavior, capturing
diverse environmental contexts and insect activity. All images were carefully annotated for
the detection of fanning bees using the Labellmg (https:/ /github.com/tzutalin/labellmg,
accessed on 15 May 2025) tool. In total, the dataset contains 18,000 frames, representing
10 minutes of continuous video, of which 15,111 frames include visible fanning bees. Across
these, 57,597 individual instances of fanning behavior were annotated. The dataset is pub-
licly available for download. Similar to other specialized object detection tasks, where
synthetic and real-world image datasets have been employed to train and evaluate deep
learning models [33], our dataset was developed to account for diverse visual scenarios
around the hive entrance.

Figure 1 illustrates sample annotated images from the dataset, highlighting diverse
fanning scenarios at the hive entrance. These examples include various lighting condi-
tions and angles, offering visual diversity critical for training robust detection models.
Notably, body orientation, shadow contrast, and wing visibility differ significantly between
sunny and overcast conditions, posing additional challenges for consistent annotation and
model generalization.

Figure 2 provides a broader view of the annotation scope, presenting instances of fan-
ning bees across distinct hive structures. Figure 2a—g show typical fanning postures on the
landing board surface, generally considered the canonical context for fanning recognition.
Figure 2h-n capture bees fanning on the metallic entrance gate, while Figure 20—-q extend
the detection context to the hive’s vertical front wall. Figure 2r-u illustrate cases of partial
occlusion, where bees are either obstructed by other individuals or hive structures. These
images emphasize the need for detection models to be resilient to variable backgrounds,
occlusions, and spatial positions.
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Figure 1. Annotated images from the publicly available dataset for detecting fanning behavior at the hive
entrance. The four examples shown originate from the entrances of the four different beehives used in
this study, illustrating the diversity in hive architecture, lighting conditions, and background complexity.

(p)

Figure 2. Examples of fanning bees in various hive locations. Frames (a—g) show regular fanning
activity on the landing board. Frames (h-n) depict bees fanning on the metallic entrance gate. Fanning
on the front wall of the hive is shown in frames (0—q), while frames (r-u) present partially occluded
fanning bees.

Figure 3 presents representative cases of behavioral variability. Figure 3a—c show
regular fanning behavior, with bees in a stationary posture and visible wing motion pat-
terns. Figure 3d,e depict occluded individuals whose behavior must be inferred from
partial indications, such as visible wing blur or elevated abdomens. Figure 3f captures
a fanning bee in motion, highlighting that fanning is not always performed in a fixed
location. Finally, Figure 3g shows a bee briefly pausing during fanning, reflecting the
intermittent nature of this behavior. These nuanced examples are essential for informing
spatiotemporal model design, as they demonstrate that fanning cannot always be defined
by static posture alone but requires temporal analysis of motion patterns such as wing
vibration and abdominal positioning.
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(8)

Figure 3. Examples of different fanning behaviors observed in bees. Fanning bees are highlighted

with green bounding boxes. Frames (a—c) show regular fanning patterns accompanied by slight
body movements. Frames (d,e) depict instances of significant occlusion during fanning. Frame
(f) illustrates fanning behavior while the bee is in motion (walking), and frame (g) captures fanning
with a brief pause.
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Figure 4 illustrates the three input encoding strategies evaluated in this study for detecting
fanning behavior in honeybees. Figure 4a presents the standard RGB image captured at time 7,
serving as a baseline input format. This representation maintains the natural color composition
and spatial detail of the scene, which is commonly used in object detection tasks. However,
it does not incorporate any temporal information, which is crucial for identifying dynamic
behaviors such as fanning that are characterized by subtle wing motion.

(e)

Figure 4. Visualization of input image variants for fanning detection: standard RGB frame at time n
(a); Temporally Stacked Grayscale (TSG) channels: Blue = I(n — 1), Green = I(n), Red = I(n + 1) (b);
absolute difference between current and previous frame D~ (n) = |I(n) — I(n — 1)| mapped to all
channels (c); absolute difference between current and next frame Dt (n) = |I(n) — I(n + 1)| mapped
to all channels (d); Temporally Encoded Motion (TEM) representation: Blue = D~ (n), Green = I(n),
Red = D" (n) (e).
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Figure 4b depicts a temporally stacked grayscale input, where the Blue, Green, and Red
channels correspond to grayscale images at times n — 1, n, and n + 1, respectively. This con-
figuration enables the model to implicitly access short-term motion data through adjacent
frames, while remaining compatible with standard architectures that expect three-channel
input. By encoding temporal progression as a channel-wise sequence, the model can
leverage visual differences caused by repetitive wing motion or posture changes without
architectural modification.

Figure 4e presents a temporally encoded motion input. Here, the Green channel
retains the grayscale frame at time 7, while the Blue and Red channels represent the pixel-
wise backward D~ (n) (Figure 4c) and forward D (n) (Figure 4d) differences, computed as
D~ (n) =|I(n) —I(n—1)|and D" (n) = |I(n) — I(n + 1)|, respectively. This configuration
explicitly emphasizes temporal changes in the scene, helping the model to isolate and
attend to regions exhibiting motion indicative of fanning. By suppressing static background
content and highlighting dynamic elements, this representation enhances the model’s ability
to detect subtle wing vibrations and abdominal shifts associated with fanning behavior.

3.2. Evaluation Metrics

To evaluate the performance of the fanning detection models, we employed the
mean Average Precision (mAP) metric, a standard measure in object detection tasks. This
metric assesses how accurately the model predicts object locations by comparing predicted
bounding boxes with ground truth annotations using the Intersection over Union (IoU)
criterion. For mAPs5, a predicted bounding box is considered a correct detection (true
positive) if its IoU with the corresponding ground truth box is at least 0.5.

The Average Precision (AP) at IoU threshold 0.5 is calculated as the area under the
Precision—Recall (P-R) curve:

1
APsy = /0 P(R),dR, (1)

where P(R) denotes precision as a function of recall. In our case, since only one object class
(fanning bee) is considered, the mAPs5, simplifies to the AP for that class:

1 &
mAPsyg = — Y AP:, where N = 1. 2
50 =N l; 50 ()
We also report precision and recall to provide further insight into the model’s detec-
tion quality. Precision measures the proportion of correct positive predictions out of all

predicted positives:
TP

~ TP+ FP’

where TP is the number of true positives and FP is the number of false positives.

P 3)

Recall quantifies the proportion of actual positives that are correctly detected:

TP

R=—_ 4
TP+ FN’ @

where FN denotes false negatives. A detection is counted as a true positive if its loU with
the ground truth is greater than or equal to 0.5.

3.3. Applied Models and Input Formats

This study evaluates three single-shot object detection architectures, YOLOVS,
YOLO11 [34], and YOLO12 [35], each trained to detect thermoregulatory fanning behavior
in honeybees at the hive entrance. These models are selected for their compatibility with
real-time inference, their proven effectiveness in visual detection tasks, and their adapt-
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ability to custom datasets. YOLOVS serves as the baseline model in this comparison due
to its widespread adoption, modular design, and strong performance across multiple do-
mains. YOLO11 and YOLO12 are more recent architectures under experimental evaluation,
designed to improve upon the accuracy—efficiency trade-off of YOLOVS by incorporating
architectural enhancements such as optimized convolutional backbones, improved neck
designs, and refined detection heads.

To assess how input representation affects model performance, each model is trained
and tested on three distinct image formats:

*  Standard RGB—a single frame at time 7, using natural color input without temporal encoding.

*  Temporally Stacked Grayscale (TSG)—a pseudo-RGB format where the Blue, Green,
and Red channels represent grayscale frames at n — 1, n, and n + 1, respectively. This
format enables temporal context while preserving compatibility with the standard
input formats used in object detection models.

¢  Temporally Encoded Motion (TEM)—a temporal input encoding where the Green
channel contains the frame at n, the Blue channel contains the backward difference
I(n) — I(n — 1), and the Red channel contains the forward difference I(n + 1) — I(n).
This format explicitly highlights motion dynamics relevant to fanning.

All models are trained under consistent conditions using the same dataset split, hy-
perparameters, and augmentation settings to ensure fair comparison. The performance
evaluation focuses on both detection accuracy (mAP, precision, recall) and inference effi-
ciency across GPU platforms, including the RTX 4080 and NVIDIA Jetson AGX Orin.

4. Results

All experiments were conducted using a GeForce RTX 4080 Super GPU with 16 GB of
VRAM. The training environment included Ultralytics version 8.3.80, Python 3.12.9, Py-
Torch 2.5.1, and CUDA 12.6. For deployment on the NVIDIA Jetson AGX Orin, trained Py-
Torch models were converted to TensorRT-optimized engines using TensorRT version 8.6.2.

The input resolution for all models was fixed at 1024 x 576 px. The dataset was split
into 80% for training and 20% for validation/testing, and all models were trained and
evaluated on the same split to ensure consistency. Specifically, images from three different
hives (Hives 1-3), as presented in Figure 1, were used exclusively for training, while images
from the fourth hive were reserved for validation and testing. Hives 1-3 varied slightly
in landing board structure, background clutter, and surface materials, offering a diversity
of visual contexts that helped improve generalization. Hive 4 featured a higher crowding
density. This hive-wise split was designed to evaluate the model’s ability to generalize
across different colony contexts and visual environments. Data augmentation techniques
included image translation by £10% of image width, scaling with a gain of £0.5, and a left—
right horizontal flip with a probability of 0.5. Color augmentation was applied using HSV
adjustments with parameters set to hsvy, = 0, hsvs = 0, and hsv, = 0.2. Mosaic augmentation
was disabled during the final 10 training epochs to stabilize learning.

Model training used the AdamW optimizer [36], with a learning rate of 0.001, momen-
tum of 0.9, and weight decay regularization. The maximum number of training epochs was
set to 1000, with model checkpoints saved every 10 epochs. Early stopping was enabled
with a patience of 100 epochs, terminating training if no improvement was observed over
that period to avoid overfitting and unnecessary computation. Batch size was adjusted dy-
namically between 6 and 32, depending on the complexity of the model architecture, to best
utilize available VRAM and optimize training efficiency. Across all models, convergence to
minimal loss typically occurred between 100 and 200 epochs.
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The total loss function used for training the detection models is defined as:
TotalLoss = Apoy - BoxLoss + Ay - ClsLoss + Aggy - df1Loss, )

where the loss gains (A) balance the contributions of the respective components: Ay, = 7.5
for bounding box regression, A, = 0.5 for classification, and A 45 = 1.5 for distribution
focal loss.

4.1. Investigation of Precision vs. Inference Time

Figure 5 presents a comprehensive comparison of detection performance versus in-
ference speed for multiple YOLO-based object detection models applied to the task of
identifying honeybee fanning behavior. The x-axis indicates the average inference time per
image (in milliseconds), while the y-axis shows the corresponding mean Average Precision
at IoU threshold 0.5. Each curve represents a specific model and input encoding combi-
nation, with marker labels ('n’, ’s’, ‘m’, ', ’x") denoting YOLO model sizes (nano, small,
medium, large, and extra-large, respectively).

Figure 5 shows the superior performance of the YOLOvS8 and YOLO11 architectures
when combined with temporally enhanced input encodings. These variants consistently
achieved higher mAP50 values at relatively low inference costs, outperforming standard
RGB inputs. YOLOv8-TEM and -TSG (cyan and light blue lines) achieved the best trade-off,
reaching up to 84% mAP50 at just under 10 ms per image, while YOLO11-TSG (orange)
also demonstrated strong results with balanced precision and efficiency.
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Figure 5. Accuracy-efficiency trade-off of YOLO models with different input encodings for fanning
detection on RTX 4080 GPU. TSG encodes motion by stacking grayscale frames at times n — 1, n,
and 7 + 1 into RGB channels. TEM highlights movement by combining the current frame with
forward and backward pixel-wise differences.

By contrast, YOLO12 models, while highly accurate in their largest configurations
(especially with TSG and TEM inputs), achieved significantly longer inference times (up
to 22 ms), making them more suitable for offline or batch processing rather than real-time
deployment. YOLO12-RGB (dark gray) performed worse in both speed and accuracy,
showing that using input formats with motion information is important for detecting
fanning behavior effectively.

Interestingly, YOLO12 performed relatively poorly in its RGB variant, with lower
mAP50 and longer inference times. This could be attributed to two key factors: First,
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YOLO12 has a more complex backbone optimized for large-scale datasets [35], which
may not generalize well on the moderately sized honeybee dataset used here. Second,
without motion-aware inputs like TSG or TEM, the model fails to leverage temporal signals
critical for distinguishing fanning from static behaviors. The dataset size, although substan-
tial, may not be sufficient to fully leverage the potential of deeper models like YOLO12.

TSG and TEM input encodings show a notable performance improvement over their
corresponding RGB variants across all tested YOLO models, particularly in terms of preci-
sion at comparable or even lower inference times. YOLOv8m with TSG reaches approxi-
mately 81% mAP50 at around 8 ms, while the YOLOv8m RGB variant achieves only about
76% mAP50 at a similar inference time, an improvement of 5% in precision. YOLO11m
with TSG improves from 76% (RGB) to 84% (TSG) while maintaining an inference time of
10 ms, offering an 8% gain in precision with no latency trade-off. In the YOLO12l model,
TSG boosts accuracy from 74% (RGB) to 84%. Here, a 10% gain in precision comes with no
increase in inference time.

4.2. Deployment on Jetson AGX Orin Platform

To evaluate the practical viability of the proposed models for real-time edge deploy-
ment, we conducted inference benchmarking on the NVIDIA Jetson AGX Orin platform.
This assessment considered both raw model throughput and total latency, including the
preprocessing and postprocessing steps necessary for deployment in production scenar-
ios. Figure 6 illustrates the performance trends of the YOLOv8 and YOLO11 models
with temporally stacked grayscale input across both RTX 4080 and Jetson AGX Orin plat-
forms. As expected, the overall throughput on AGX is reduced compared to the RTX GPU,
but model ranking trends and relative performance differences remain consistent.
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Figure 6. Comparison of YOLOv8 and YOLO11 TSG performance across RTX 4080 and Jetson AGX
Orin. The blue and red (RTX) curves correspond the PyTorch reference models (YOLOv8 and YOLO11
TSG) in Figure 5.

Accuracy degradation due to TensorRT conversion was minimal across precision levels.
FP16 models provided a good balance between accuracy and efficiency, often achieving
near-FP32 precision levels while nearly doubling frame rate compared to PyTorch inference.
For example, YOLO11m’s inference time is reduced from 40 ms to 22 ms when using FP16
precision, with no observed drop in accuracy. On average, models converted to INT8
achieve even faster processing speeds, but this comes at the cost of a slight reduction in
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precision. Notably, the smaller the model, the greater the drop in mAP50, typically ranging
from 1% to 5%, excluding nano models, where the reduction often exceeds 10%.

Table 1 provides a detailed breakdown of the maximum achievable frames per sec-
ond (fps) for YOLOvS, YOLOL11, and YOLO12 models on the Jetson AGX Orin across
different TensorRT precision modes (FP32, FP16, INT8). Among the evaluated models,
INT8 quantization achieved the highest inference speed, with YOLOv8n reaching up to
33 fps and YOLO12x up to 17 fps. When considering the full pipeline, including pre-
processing and postprocessing overhead, the practical frame rates are influenced by an
additional latency component. For PyTorch inference on AGX, the combined overhead
was measured at 15 ms (10 ms preprocessing + 5 ms postprocessing). For TensorRT-
accelerated models (regardless of FP32, FP16, or INTS), this increased slightly to 18 ms
(12ms + 6 ms). For comparison, the same PyTorch model running on RTX 4080 incurred only
11 ms total overhead (7.5 ms + 3.5 ms), highlighting the advantage of high-end GPUs for
end-to-end processing.

Table 1. Maximum frames per second achieved by YOLOvS8, YOLO11, and YOLO12 models on Jetson
AGX Orin with 1920 x 1080 px image resolution and 1024 x 576 px model input resolution.

YOLOvVS YOLO11 YOLO12

Model

n ) m 1 X n s m 1 X n S m 1 X
PyTorch (RTX) 58 56 52 48 38 52 52 47 38 37 44 43 42 35 33
PyTorch 26 22 18 15 12 23 22 18 17 11 17 16 14 11 8
FP32 28 23 21 17 13 26 23 20 20 14 20 17 16 13 10
FP16 31 27 23 22 20 30 26 25 22 20 23 20 20 18 16
INT8 33 30 25 23 22 31 29 25 23 22 25 23 20 19 17

4.3. Visualizations

Figure 7 illustrates representative examples of fanning detection using two high-
performing model-input combinations: YOLO11lm with temporally stacked grayscale
input, Figure 7a,b, and YOLOv8I with temporally encoded motion input, Figure 7c,d. These
visualizations highlight the models’ ability to accurately localize fanning bees in complex
visual scenes characterized by high bee density, variable lighting, and partial occlusion.

In Figure 7a,b, YOLO11m-TSG consistently detects fanning individuals even in
crowded environments, with bounding boxes placed tightly around bees exhibiting the
characteristic stationary posture and wing motion blur. This demonstrates the model’s ro-
bustness in handling background clutter and overlapping individuals, which are common
challenges at hive entrances.

Figure 7c,d show YOLOvVSI-TEM in action, effectively leveraging temporal motion
encoding to isolate and detect subtle fanning behaviors, even when the visual features are
faint or partially obscured. The use of difference-based temporal encoding in TEM enhances
the visibility of wing motion patterns, enabling the model to disambiguate fanning from
other behaviors like walking or resting.

The qualitative results confirm the quantitative findings reported earlier: both TSG and
TEM input formats significantly improve detection reliability by incorporating temporal
context. These visualizations affirm that medium-to-large YOLO variants with temporally
enriched inputs can support accurate and stable detection in real-world field conditions,
enabling real-world deployment in hive monitoring systems.
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Figure 7. Detected fanning bees on the entrance to the beehive using YOLO11m with TSG (a,b)
and YOLOv8I with TEM (c,d).

5. Discussion

The evaluation results demonstrate that several YOLO-based detection models achieve
high accuracy and favorable inference times, particularly when combined with temporally
enriched input formats such as TSG and TEM. However, real-time performance is highly
dependent on the target hardware platform. On the RTX 4080 GPU, all tested models
efficiently meet real-time processing requirements for the 30 fps video data used during
dataset collection. Even larger models like YOLOv8x and YOLO12x exceed 30 fps un-
der PyTorch inference, indicating that high-precision detection can be achieved without
compromising throughput on powerful desktop GPUs.

Contrary to initial expectations, several lightweight models on the Jetson AGX Orin
platform do meet the 30 fps real-time requirement when all processing stages are included,
as reported in Table 1. Specifically, YOLOv8n and YOLO11n in FP16 mode achieve 31 fps,
while INT8 versions of YOLOvVSn (33 fps), YOLOvSs (30 fps), and YOLO11n (31 fps) also
surpass the 30 fps threshold. However, these configurations come with a notable trade-off
in detection precision, particularly for nano and small model variants, where mAP50 may
drop by up to 10% or more in INT8 mode. Most mid- and large-sized models operate in
the 16-25 fps range on AGX, falling short of real-time performance.

To bridge this gap and enable real-time deployment on edge devices like Jetson AGX
Orin, several optimizations are recommended. The current resolution of 1024 x 576 px
offers a good balance between detail and model accuracy; however, down-scaling (e.g.,
to 832 x 468 or 640 x 360) could significantly reduce inference time with minimal impact
on detection performance, especially for larger models. Operating the input camera at
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a lower frame rate (e.g., 20-25 fps) can reduce the processing load while still capturing
sufficient temporal information for detecting fanning behavior, which typically involves
slower, repetitive motions. Applying lightweight model compression techniques could
further reduce latency without retraining from scratch. Processing only every second
frame and interpolating results for skipped frames is another potential trade-off strategy in
latency-critical applications.

While processing efficiency has been evaluated primarily in terms of fps, power con-
sumption plays a critical role in edge deployments, especially in battery- or solar-powered
scenarios. In this study, the Jetson AGX Orin 64 GB model was operated in MAXN mode,
which allows the device to scale up to 60W total system power for peak performance. Dur-
ing model inference, actual system power draw ranged from 30 to 40W with YOLOvS8s in
FP16 mode and from 26 to 34 W using INT8 quantization, depending on ambient temperature
and workload intensity. Applying input downscaling or frame skipping reduced average
consumption to around 22-27 W, offering meaningful energy savings. This highlights the
importance of optimizing both model architecture and data input strategies to manage thermal
and power budgets effectively on high-capability edge devices.

To improve detection precision, particularly for smaller model variants or INTS-
quantized deployments where accuracy tends to drop, several strategies can be proposed.
When hardware permits, selecting medium or large model sizes (e.g., YOLOv8m/1 or
YOLO11m/1) improves mAP50 considerably, especially when paired with temporal input
formats. The use of TSG and TEM formats has already proven effective; however, incorpo-
rating motion saliency maps or optical flow representations could further enhance temporal
sensitivity. Including more than three-frame stacks or training with frame sequences could
improve model ability to detect intermittent or weak fanning signals. While current edge
deployment remains challenging at 30 fps with full-resolution inputs, a combination of reso-
lution scaling, hardware-specific optimizations, and temporal encoding refinement presents
a viable path toward achieving accurate and real-time fanning detection in the field.

An observed fanning detection precision of around 85% indicates strong but not
perfect model performance, which may be affected by several factors. One key issue is
visual ambiguity, as fanning behavior can closely resemble other actions such as guarding,
walking, or brief wing adjustments, particularly when there is partial occlusion or motion
blur. This challenge is amplified in crowded scenes where bees overlap or obstruct each
other, making it difficult for the model to identify distinctive visual features. Additionally,
low-amplitude and irregular wing movements are often hard to detect reliably, as they may
blend into background activity or appear inconsistent across frames.

Another factor is behavioral variability, as illustrated in Figure 3. Some bees fan
while in motion (Figure 3f), while others may pause briefly during fanning (Figure 3g).
These variations interrupt the regular movement patterns that the model typically learns to
recognize. Since fanning cannot always be defined by a fixed posture or location, detecting
it often requires understanding how motion evolves over time.

Labeling inconsistencies in the training data may also contribute to reduced precision.
For example, when fanning is only partially visible, such as when only a blurred wing
or lifted abdomen is seen, annotations may differ across similar cases. This inconsistency
introduces uncertainty during training and lowers the model’s confidence in detecting
borderline examples.

These challenges emphasize the need for strong temporal modeling in detection
systems. Improvements may be achieved by adopting more advanced motion-based
representations, refining annotation guidelines, or incorporating additional input types
such as optical flow or audio signals. These enhancements can help the model better
separate fanning behavior from visually similar actions in difficult conditions.
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Future work should also incorporate cross-validation strategies (e.g., k-fold validation
or leave-one-hive-out testing) to provide a more robust assessment of model generalization
across varying hive environments and seasonal conditions.

6. Conclusions

This study presents a comprehensive evaluation of state-of-the-art single-shot ob-
ject detection models for identifying thermoregulatory fanning behavior in honeybees
at the hive entrance. By leveraging a newly collected and publicly available dataset, we
demonstrated that incorporating temporal information through input encodings such as
Temporally Stacked Grayscale (TSG) and Temporally Encoded Motion (TEM) improve
detection precision by 5-10% across multiple YOLO architectures. The experiments re-
veal that medium and large variants of YOLOvS8 and YOLO11, when combined with TSG
or TEM input formats, achieve high detection accuracy (mAP50 up to 85%) with infer-
ence times suitable for real-time processing on high-performance hardware like the RTX
4080 GPU. On edge devices such as the Jetson AGX Orin, only lightweight models (e.g.,
YOLOvV8n/s, YOLO11ln) meet the 30 fps requirement for real-time deployment at full
input resolution; however, they suffer from a notable drop in precision, especially under
INT8 quantization.

To bridge this accuracy—efficiency trade-off for embedded applications, we rec-
ommend further optimizations, including reducing model input resolution, lowering
camera frame rates, or implementing frame skipping strategies. Additionally, future
work should explore richer temporal representations, such as optical flow or saliency-
guided motion encoding, as well as refined labeling strategies to address annota-
tion inconsistencies that may impact model confidence. The findings indicate that
deep learning-based visual monitoring of fanning behavior is feasible and promising
for real-time hive health assessment on suitable hardware using motion-aware model
designs. This scalable, non-invasive approach supports precision beekeeping and
ecological research.
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