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Abstract

Honeybees play a vital role in sustaining our agricultural economy and maintaining the ecosys-
tem. A healthy and well spread bee population is crucial for better pollination of local crops as
well as non-agricultural flora. The decline in global bee population and increased instances of
Colony Collapse Disorder (CCD) have drawn attention of researchers all over the world. Recent
technological advancements have impacted the bee-keeping industry in numerous ways, and elec-
tronic beehive monitoring has significantly improved over the past few years. Monitoring systems
have been developed to observe temperature, humidity and acoustics inside the hive, overall weight
of the hive and outgoing/incoming bee traffic to gauge the health of beehives. These monitoring
systems aided by various wireless communication technologies make it possible for the beekeepers
to monitor a large number of hives continuously, simultaneously, from a distance, and only intervene
when required.

The most important characteristic of a monitoring system is the set of parameters used for
monitoring. Each commercially available solution makes use of its own set of parameters to
determine the health of bees. Most of the research carried out in this area focuses on a small set of
two to three sensors in each study, rather than examining a bigger set for its collective usefulness.
For communication, the monitoring systems rely on either 3G/4G or WiFi networks which are not
accessible everywhere, or on satellite communication which can be very expensive. Despite having
a high price tag, most of the monitoring systems provide beekeepers with just the raw data from
sensors without any analysis on bee health. Proposed systems in the literature have also not been
able to make the most of deep learning algorithms, mostly because the data used for training is
collected over a short period of time, and from hives with little geographic diversity. Use of such
small datasets with limited variations often leads to inconclusive and unreliable results. Beekeepers,
in particular from Australia, have not been able to take full advantage of these electronic monitoring
systems because of the aforementioned limitations. The vast landscape with no cellular coverage,
and the high associated costs of using such monitoring systems are the major challenges faced by
the local honeybee industry.

This work addresses the design and development of a beehive monitoring system capable of
long range communication with low power consumption. Appropriate sensors for the proposed
system are selected after an extensive review of literature. This selection is based on the relevance of
sensor with bee health/activity, suitability for long distance transmission over low capacity channels,
and optimal use of power. Extraction of appropriate features from sensor data is the key requirement
for remote deployment. Different experiments were performed to evaluate various sensors and their
features for their importance, and viability for hive deployment. A total of eight sensor systems
were deployed in multiple hives, at different locations, and in varying environmental conditions
over a 12 month period. During these deployments, Narrow Band Internet of Things (NB-IoT) was
thoroughly tested for its communication feasibility from remote sites. Based on the findings, use of
NB-IoT is proposed for low cost and reliable communication from remote beehives. The design of

this system has also been made available for other researches to use and improve upon.
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The aim of sensor deployments in this study is not only to test different sensors and communi-
cation for beehive monitoring, but also to build a quality sensor dataset from beehives deployed at
different sites. Beehive data collection is a slow process based on the natural activity and life cycle
of honeybees. The harsh environment of remote sites, sensor failures, and communication issues
make it a very challenging task. A dataset of 2,170 days of beehive sensor data, weather data, and
seasonal information has been collected during this study. The resolution of 144 data points per
day in this dataset provides a good picture of daily bee activity, and facilitates the use of machine
learning in beehive health monitoring. Random forests are used to evaluate the contribution of
different sensors in this dataset, as well as of the performance of monitoring system.

Daily hive weight variations are a crucial aspect of hive health and bee activity. Hive weight is
affected by multiple complex internal and external factors. Traditionally, an expensive and difficult
to deploy weighing scale is used to monitor the hive weight. This is the first work to propose the use
of machine learning for beehive weight estimation. Latest machine learning algorithms were tested
for their suitability with beehive monitoring and weight estimation, and modified to make most of
the information available in beehive sensor data. This work presents two deep learning models for
beehive weight estimation, WE-Bee and Apis-Prime. The features for training and testing these
models were selected after an in-depth study of bee behaviour, and the impact of environment on
bee foraging activity. WE-Bee uses Long Short Term Memory (LSTM) encoders and decoders with
temporal attention, whereas Apis-Prime uses self-attention encoders for the same task. These models
were tested on sensor systems and hives which were not part of the training set. The promising
results validate the good performance of both networks for unseen data. The hives used for the data
collection were allowed their natural variations in colony strengths and forager activity, and were
moved to sites at a significant distance from each other to collect geographically diverse data. The
diversity of the training data played a significant role in the quality of estimations. Use of these
machine learning models has the potential to eliminate expensive beehive weighing scales, and
reduce the cost of beehive monitoring systems by more than half.

Evaluation of sensors and contribution of features towards a specific task is important for
improving and fine-tuning the design of monitoring systems. This work proposes the use of attention
weights of self-attention encoders to evaluate sensors and sensor features, as well as to identify the
times of day when sensor data carries most information. This enables a significant reduction in the
number of features used for estimation. The equally good results of weight estimation with reduced
features signify the usefulness of self-attention encoders for feature selection. These findings not
only help assess the bee health/activity remotely, but also significantly reduce the monitoring costs.
The estimates about hive weight variations using machine learning provide the beekeepers with
important information about the hive without using an expensive weighing scale. The promising
weight estimates indicate that the proposed system collects important data from the hive, which can

also be utilized for a variety of beehive health monitoring tasks.
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Chapter 1
Introduction

This chapter discusses the vital role of honeybees and the importance of Beehive Moni-
toring Systems (BMS). The use of BMS in Australia is also discussed with a focus on the
advantages they bring and the major issues associated with their usage. Based on these
issues, three research questions are identified. The last section outlines the layout of the

thesis chapters that follow.

1.1 Significance of Honeybees

Food is one of the fundamental physiological human needs and is the basic requirement for
humans to survive [1]. All the other needs are secondary in nature until the basic human
physiological needs are met. With the constant increase in global human population, it is a
necessity to expand the agricultural land as well as to enhance the agricultural productivity.
Cross-pollination is a crucial factor that determines the agricultural productivity and directly
impacts the quantitative as well as qualitative outcome of around 70% of world’s crops [2].
It is estimated that around 50% of all the cross pollination is carried out by honeybees [3],
which accounts for more than 30% of global food production. In Australia alone, the crops
such as almonds, apples, pears and cherries are totally dependent on European honeybees
or Apis Mellifera' [4] for pollination, and crops such as orange, plum, apricot, soybean, and
canola partially benefit from the pollination by honeybees. Honeybees are also vital for the
pollination of alfalfa, a widely used nutrition-rich livestock feed [5]. Agricultural farmers
are well aware of the impact of bee pollination and often purchase their own honeybee hives,
or pay beekeepers to provide pollination services to their crops/orchids during flowering
season to maximize the pollination and production.

The value created for horticulture and the Australian economy from paid pollination
services has been estimated above AUS$5 billion annually, with some estimates exceeding
AUS$14 billion [6]. Whereas gross value of honey and beeswax production was estimated

at AU$147 million in 2019 [6]. Taking these figures into account, honey is just a by-

'Throughout this thesis, bee(s) or honeybee(s) refer to Apis Mellifera, unless otherwise specified.
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product of what honeybees actually contribute towards the Australian economy. The
impact of honeybees on local ecology is far greater than the economy. A wide range of
non-agricultural flora depends on native honeybees for their survival, as the majority of
pollination in forests is carried out by native bees. This flora then provides food and refuge
to a wide range of insects, birds and animals [7]. The honeybees have a strong impact on
the quality, quantity and the variety of food available to us. Moreover, the influence of
honeybees on the survival of our ecological system is far greater than what is normally

perceived.

1.2 Importance of Beehive Monitoring Systems

In order to cope with the ever in-
creasing need of agriculture-based
food for humans and domestic live-
stock, the global bee population
must grow as well. Honeybees are
extremely social and they need a
good hive to thrive [8]. A well
maintained beehive or colony is
fundamental for healthy bee pop-
ulation. Honeybee colonies are of-

ten considered as super-organisms,

h h bee plays its role in th
Figure 1.1: A hive frame with honeybees, some whete cach bee plays 1is rofe n the

capped honey and a sensor board of designed beehive
monitoring system on one side. The sensor board is nately, over the last three decades,
covered using shade cloth to prevent bees from mak- ynpusual high rates of decline in
ing direct contact with the sensors. Image captured in
November 2020 at Capel WA.

survival of the colony [9]. Unfortu-

the bee colonies are reported glob-
ally [10]. The major causes for this
decline are the widespread use of pesticides in industrial agriculture, parasites, and climate
change [11]. The use of strong pesticides intended to protect crops, often result in the
decline of bee population, making it a counterproductive measure for agricultural growth.
The global climate change and resulting temperature variations, as well as bush fires also
add to the problem, as honeybee colonies find it hard to adjust to the weather extremes.
Figure 1.2 illustrates the life cycle of a worker honeybee and the impact of environment
on this cycle. Queen is the single most important bee in a hive, and her only job in 5 to 7
years of life is to breed. Eggs are laid by the queen in hive cells, and each egg passes through
larva and pupal stages, before emerging out of the cell as a young bee, also known as a hive
bee. This cycle from egg to larva, larva to pupa, and then to hive bee takes three weeks and

during this time the juvenile are referred to as brood. For the final brood stage, the larva
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Figure 1.2: Population dynamics of worker honeybees [12].

spins a cocoon around it to pupate, and hive bees cap the cell. This final brood stage is
commonly referred to as capped brood. Brood rearing is the primary responsibility of the
hive bees, and the balance between the numbers of hive bees and brood is critical. Hive
bees transition to forager bees after staying in the hive for about three to four weeks. The
forager bees gather the food for the hive, which comprises honey and pollen. After about a
couple of weeks of foraging, the foragers die their natural death. In a healthy beehive, the
death rates at other stages of the life cycle of bees are insignificant. The balance between
forager and hive bees is also maintained through social inhibition. Foragers are the only
bees in the colony with direct access to food, illustrated with a solid arrow. The food they
bring back is used to feed larvae, queen, worker bees, and is also stored for use in the winter
season. Figure 1.3 shows stored pollen, nectar, as well as brood on a single hive frame.
The environment through the effects of seasonal variations, climate and weather affects the
brood production [12]. Excessive use of pesticides can increase the forager death rates and
decrease the food availability in the hive.

In most cases, a colony in distress shows signs of weakness over a period of time
before eventually collapsing [13]. If a beekeeper is able to identify a colony in distress
and intervene in a timely and adequate manner, there is a good chance that the colony will
recover and survive. In a case where the colony is infested with a disease which is hard to
recover from, the beekeeper can isolate this colony from the rest of the colonies to stop any
further spread of the disease. Either way, timely intervention from the beekeeper is the key.

However, this timely intervention is not always possible because of multiple factors:

1. Scale of operations: When honeybees are used in large scale operations for honey
production or pollination services, the number of hives at a single site can reach up
to several hundreds. This requires a lot of man power to manually inspect the hives,

which in itself is a laborious and time consuming process.
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Capped nectar

Brood
Figure 1.3: A frame with capped nectar/honey (white cells), pollen (yellow cells), and
brood (brown cells). Image captured in May 2019 at UWA Campus.

2. Remote location of hive sites: In order to maximize the honey production, hives are
often moved from one location to another, either to ensure availability of nectar near
the hive site, or to avoid extreme weather conditions. Pollination services also require
hives to be moved from one site to another. These sites at times can be hundreds of
kilometres away from inhabitable areas, and because of logistics, keeping a manual

check on hives can be a difficult and costly process.

3. Minimizing the interference: Honeybees do not like frequent interruptions caused by
hive inspections, as this disrupts their hive activity. Each time a hive is opened for
inspection [14], it sets back bees on their progress. After the inspection, bees have to
first fix the damage caused to their hive wax structure before they can get back to
gathering pollen and nectar. This forces the beekeepers to keep their interventions
to a reasonable level. On one hand minimal intervention allows the honeybees to
maximize their productivity, but also increases the chances of beekeepers missing

out on observing any signs of disease or weakness in the colony.

Beehive monitoring systems

offer a solution to all three major —> Data Storage _l

issues discussed above. Figure 1.4

shows the basic flow of informa- .. .
Communication Processing

tion in a remote beehive monitor- T l

ing system. BMS use electronic

sensors to gather bee health related Electronic Sensors User Interface

data from the hives, use a commu-
nication medium to transmit this Figure 1.4: Flow of information from sensors to a

data to a storage. This data is pro- beekeeper in a remote beehive monitoring system.



cessed to extract information, and beekeeper can access this information using an interface.
Figure 1.1 shows an image of a hive frame with designed BMS, captured while beekeeper
was inspecting the hive during a test deployment. BMS can be deployed in numbers, thus
reducing the human dependency to keep a manual check on the hives. Decision making
based on the sensor data can provide an automated alert to beekeeper when intervention is
needed. These systems can be used in remote areas and can constantly monitor the state of

the hive without the need of beekeeper to open the hives for inspection on regular basis.

1.3 Beehive Monitoring Systems in Australia

One of the biggest problems faced by Australian beekeepers in the monitoring of beehives
is the vast agricultural landscape in Australia. Historically, beehive sites were mostly
located in close proximity to human settlements. But over last several decades, the area and
spread of beehive sites has increased many folds. Unlike regular crops where farmers can
arrange for the necessities such as pesticides and fertilizers to make cultivation fruitful in
the area of their choosing, beekeepers have to relocate hives to sites where conditions are
favourable [15]. This makes beekeeping a challenge, especially if the bee colonies have to
be spread over a huge area to ensure a good supply of pollen and nectar for each bee colony.
Human monitoring of bee hives on regular basis means putting in a lot of labour, which
impacts the cost-effectiveness of honeybee products. In contrast, decreasing the frequency
of monitoring puts the health of bee population at risk which is also not desirable.

To elaborate on this using an example, majority of the commercial beekeepers in Perth
region move their hives to northern sites during the winter, and towards south during the
summer. Beekeepers Nature Reserve is one of the favoured beekeepers site in the north
and is more than 200 km away from Perth city, with a travel time of approximately 3 hours.
A visit to hive site in this reserve requires a total of 6 hours of travel each day, and many
simultaneous days of visits are required to inspect 100s of hives. If beekeepers want to
minimise this travel, they arrange for an accommodation in the nearest town for several
days while they complete the hive inspections. Multiple beekeepers are required for such
inspections, and paying for their wages, accommodation and food can be costly, especially
if the inspection is just to check upon bee health. Human involvement is necessary for
operations such as replacing the queens and extraction of honey. Whereas regular health
inspections can be easily replaced by electronic monitoring systems.

One of the advantages of BMS is that they can be deployed in remote areas to monitor
hives spread over a large area with minimal human resources. However, for real time
monitoring, the majority of such systems rely on either 3G/4G cellular networks [16, 17] or
satellite communication [18]. Beekeepers in urban areas make use of WiFi [19] as well as
Bluetooth [20], but this is not a practical solution for the majority of beekeepers who operate

in rural areas. In Australia, the problem is a bit more complicated as cellular coverage is
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SR Astal Lk Australia

Figure 1.5: Coverage map of 3G/4G network in Australia for Telstra (left), Optus (middle)
and Vodafone (right). [21]

available mostly in populated areas as seen in Figure 1.5. Beekeepers move their hives from
one site to another based on the availability of nectar and favourable weather conditions. If
the site does not have cellular coverage, an alternate solution is to use satellite-based BMS,
which are significantly expensive to operate and not always feasible.

Minimizing physical interventions is another key advantage offered by beehive monitor-
ing systems. This is only possible if the monitoring systems are energy efficient, thus able
to run on battery power for longer periods of time. This is highly dependent on the mode
of communication employed by the monitoring systems, as communication can be a very
power hungry process, especially if sensor data is to be transmitted frequently. None of
the commercially available monitoring systems [19, 20, 18] use the latest long-range and
low-power communication technologies such as LoRaWAN [22] or NB-IoT [23]. These
communication technologies are especially designed for low data-rate and long-range
communication needs. Remote beehive monitoring systems fit this profile very well, and
using such communication systems can significantly reduce the power consumption, thus
increasing the duration of battery charge cycle of the BMS.

However, the amount of sensor data generated by current monitoring systems is not
appropriate for use with LoRaWAN and NB-IoT, which are both designed for low data-rate
communication. Beekeepers in Australia need monitoring systems which are capable of
long-range and low-power data transmission. BMS with long range capabilities will not
only allow the beekeepers to move their hives further into the remote forests but also reduce
the need of frequent visits to hive sites to replace the batteries.

Another problem faced by beekeepers is the poor cost-effectiveness of monitoring
systems. This becomes a major concern for large scale deployment, as equipping each hive
with a monitoring system can be very expensive. Moreover, the beekeepers have to find a
balance between the number of monitoring systems they can deploy and the profits they
can generate. Apart from the initial cost of purchasing the monitoring systems, there is
often an annual subscription fee for unrestricted access to the sensor data or analytical tools.
The high costs associated with electronic monitoring of beehives are a big factor for the

majority of beekeepers who decide against the use of monitoring systems.
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Beehive monitoring systems have not been able to capitalize on the recent advances in
the field of machine learning. There is a significant potential of improving the accuracy of
predictions about bee health/activity, honey productivity, and bee diseases using machine
learning. Soft sensing can make use of machine learning to reduce the cost of monitoring
systems. The electronic sensors used in the monitoring systems can also be evaluated for
their contribution for specific tasks using machine learning. This is an area that needs more
focus of researchers working in the field of electronic beehive monitoring.

The challenges faced by beekeepers in Australia show that issues related with beehive
monitoring are complex, diverse and also region specific [24]. The commercially available
monitoring systems are yet to come up with a widely acceptable solution. Based on
problems faced by beekeepers in general, and the communication problems specific to

Australian beekeeping industry, this work aims to answer following three research questions.

* Which sensors should be used to design a low-power and long-range beehive moni-

toring system for remote regions?

* Is it possible to reduce the system design cost by using soft sensor prediction to

replace expensive/difficult to use sensors such as weighing scale?

» Can machine learning algorithms assist in the selection of sensors for specific tasks,

and help fine tune the design of beehive monitoring systems?

1.4 Thesis Contributions

The primary focus of this thesis is the design of a cost effective, long range electronic
sensor system for remote beehive monitoring. The three research questions detailed above
focus on achieving this by improving different aspects of the system design. To investigate
the first research question, an in-depth analysis of sensors used in beehive monitoring has
been conducted to guide the choice of the best sensors for the proposed system. While
one or more sensors can be used for a specific task, not all of them may be appropriate for
practical deployment given considerations of the power consumption, size, cost, amount of
data generated, or computational complexities involved. Machine learning applied to this
design problem required significant consideration within this thesis but is not in itself, the
primary focus. Rather it is used as a tool to help find answers to these research questions,
leveraging the thesis contributions in the area of sensor integration into the hive.

To this end, the first research question is used to evaluate the contribution of different
sensors that have been used in the design. Use of machine learning is not very common
in this application, but this work shows that it is a very effective approach to benchmark
the performance of different sensors in the system for a given task. The main task it is
applied to in this work is to estimate the daily weight change of the hive, which as will be

argued, is a difficult and expensive parameter to measure. Different sensors capture varying
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amount of information contributing towards this daily weight change. Knowledge gaps
filled in this work include determination of the correct selection of sensors combined with
prudent application of machine learning to understand the impact in minimizing the data
generated by the system. Data minimization is an essential requirement to employ NB-IoT
or LoRaWAN for long range communication.

Considering the second research question, different methods are explored to reduce the
system design cost. Soft sensing using machine learning has shown significant potential
and this work shows good accuracy associated with this technique to estimate the hive
weight. Importantly, it is the first work to use soft sensing for beehive weight estimation.
The first research question uses the daily net change of hive weight as a benchmark, whereas
in the second question these estimates are generated as a time series of the weight variations
of hive throughout the day. The hive weight variations within a day carry very useful
information for the beekeepers and help them access the bee activity in great detail.

To address the third research question, we explore the use of machine learning not only
for soft sensing the hive weight, but also to identify the major contributors for these daily
weight estimations. This evaluation is not just limited to the contribution by different sensors
and different features within sensor data, but also across different times for the day. The time
based attention maps generated using machine learning can be used to devise an optimal
data collection schedule from the hives. These maps also show the potential of machine
learning in studying the activity of honeybees, and the impact of different environmental
and weather conditions on the bee activity. The contribution map of different sensors can
be used to eliminate less important sensors from the design, as well as improve the feature
extraction process by focusing more on features with higher contribution. It is hoped this
will reduce the system design cost, minimize the data generated by the system, as well as
optimize the power consumption. Such explainability provided by machine learning is a
means to advance the electronic system design, improve our comprehension of the bees, as

well as help beekeepers better understand and adapt this technology to their needs.

1.5 Thesis Layout

Beehive health monitoring is a multi-disciplinary area and the researchers working in
this area have proposed various solutions. Most of these solutions target different aspects
of monitoring, based on the area of interest and expertise of the researchers. Chapter 2
examines a range of parameters that impact the electronic monitoring of honeybees, and a
wide variety of beehive monitoring systems proposed in the literature. Based on the analysis
of proposed monitoring systems, and some commercial beehive monitoring systems, three
research questions are identified. To address the core issues related to the system design
and sensor datasets, a new system design for remote monitoring is proposed. Chapter 3

discusses the design and development of this monitoring system in detail. The emphasis of
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this design is on low power consumption and long range transmission to facilitate remote
deployment. The senors used in the system are also evaluated for their effectiveness.
Chapter 4 first elaborates the dataset collected in this study using deployment of multiple
sensor systems from different geographic locations over a six month period. This chapter
then discusses the use of deep neural networks for estimating the daily weight variations of
beehive. This is the first work to estimate the daily beehive weight variations using machine
learning. Chapter 5 proposes the use of self-attention encoders for the task of beehive
weight estimation, using a bigger dataset collected over a 12 month period. The attention
weights of self attention encoders are also used to evaluate the contribution of different
sensors and features, as well as different time periods of the day towards daily weight
variation estimations. Based on these findings, this chapter also describes the changes
made to the design of the monitoring system. The final chapter of this thesis concludes our

research, and discusses the limitations and future work.
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Chapter 2

Background on Beehive Sensors and

Monitoring Systems

This chapter provides a background on the sensors used in beehives, and analyses some
recent monitoring systems proposed in the literature. The discussion starts with parameters
which either trigger a change in the bee behaviour, or are an indicator of change in the status
of bee health or activity. An understanding of these parameters is important as they play a
significant role in the selection of sensors for the monitoring systems. These parameters
can be divided into different categories based on their relevance to bee health and activity.
The factors associated with the use of these sensors are also discussed in detail. The is
followed by an analysis of the several monitoring systems proposed by researchers for their
choice of sensors, design and methodology, data collection techniques, communication,
remote deployability, costs and data processing capabilities. A brief review of some of the
commercially available BMS is also presented. All of this analysis is then used to identify

and discuss major research gaps in this area.

2.1 Sensors and Parameters for Beehive Monitoring

Honeybees live in a very complex social structure, formed by thousands of bees, where each
bee has a specific role to play to ensure the survival of the colony. The internal dynamics of
the hive such as presence of a queen, it’s age, egg laying ability of the queen, ratio between
worker bees and the brood as well as forager bees are critical in determining the future
population size of the colony. If a bee colony is able to increase in population, or at the
very least maintain a population over a period of time, it is defined as a healthy colony. But
if the queen is not able to lay enough eggs, or there are not enough worker bees to maintain
the hive and take care of the brood, or there are insufficient foragers to support the nectar
and pollen needs of the entire colony, the colony will not be able to maintain a healthy
population. The number of bees in such a weak colony will decrease and if it continues for

a long period of time, the colony may collapse. The availability of food, weather conditions,
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and threats including diseases, predators and exposure to pesticides are major factors which
impact the health of a colony.

A good monitoring system should be able to sense variations in the internal as well as the
external conditions, but many of these variations are difficult to detect. While some sensing
techniques face technological limitations, others are not practical. For example, even with
significant technological advancements over the last 20 years, it is not yet possible to detect
the presence of a primitive stage virus in the colony. Only when the virus starts impacting
the performance of bees, the abnormal trends and variations become obvious. Also, to
inspect the state of the bees in the hive, use of cameras is not practical. Theoretically, it’s
conceivable to use thermal cameras, infrared cameras or low light cameras inside the hive
but such systems will only monitor part of a hive, never providing the complete picture, all
at the expense of valuable space inside the hive. Honeybees use propolis (the bee glue) [25]
to cover the exposed sensors and circuitry of these monitoring systems which impacts their
functionality. This means that a direct assessment of some of the key parameters is only
possible with a physical inspection by the beekeeper.

Some researchers have tested commercially available environmental monitoring systems
for beehive health monitoring [26]. These systems can measure temperature, humidity,
various gas contents in the air such as Molecular Oxygen, Carbon Dioxide, Nitrogen
Dioxide, Ethanol, Hydrogen Sulphide, Isobutene, Toluene, Ammonia, Carbon Monoxide,
and Methane. This methodology has its drawbacks as many features used for monitoring
the environment do not overlap with those required for monitoring the beehives (discussed
later in this chapter). From a beekeeper’s point of view, every inch of space inside the hive
is precious, thus the bulky environmental monitoring systems are considered a poor fit.
Most of the environmental monitoring systems intended for use in air or soil are also not
packaged in a suitable manner for use with honeybees.

This background study presents different types of parameters, and the important factors
to consider while selecting the sensors for use in BMS. The first and foremost factor is the
relevance of the parameter to beehive health and state. This relevance should always be
given the highest preference in deciding upon the use of a parameter in BMS. Based on the
relevance criteria, the parameters are divided in four different categories with relevance
as Very High, High, Medium and Low or Unknown. Preferences of other factors largely
depend upon the priorities of the designers and the needs of intended users. Some may
desire a very low cost system whereas some may want it to be extremely accurate. However,
for an optimal design, all of the factors should be given appropriate consideration. This

chapter will evaluate the following 6 factors for each sensing parameter.

1. Cost effectiveness: this includes the cost of sensor, any associated equipment or
hardware used with the sensor, and the cost of sensor data storage and/or transmission.

Low net cost has a higher rating.
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2. Accuracy: the accuracy of the sensor, and the impact of the deployment methodolo-
gies of the sensor on it’s accuracy. This also includes the accuracy of algorithms
which extract the information from the sensor dataset. Higher accuracy has a higher
rating.

3. Energy efficiency: this factor is the reciprocal of power consumed by the sensor,
and the power used in processing and transmitting the data generated by the sensor.
Lower power consumption leads to better efficiency and a higher rating.

4. Computationally simple: this is the reciprocal of total amount of computing resources
required to acquire and process the sensor data. Lower computational complexity

has a higher rating.
5. Deployablity: this is the measure of the ease with which sensors/systems can be

deployed, and the ease with which the beekeeper can work with this sensor. Greater

ease in deployability has a higher rating.
6. Invasiveness: this is the measure of the impact of sensors and related equipment on

the normal activities of honeybees. Lesser impact on honeybees has a higher rating.

The quantification of each factor in these tables as number of ‘x’, ranging from 1 to
5 is relative to the same factor of the other sensors in the tables. For example, the size
of temperature sensors is smaller when compared to the size of most the other sensors,
while the size of weighing equipment is larger than any other equipment discussed in this
review. The quantification of these factors is also dependent on the user’s preferences,
understanding, experiences and expectations from the sensor. For example, in case of
absolute power consumption, some may consider consumption in the milli-watt range
as low enough, while others may argue that power consumption should be down in the
micro-watt range for a power efficient BMS. Moreover, sensing a particular parameter may
have a different power consumption rating based on usage, operating conditions and mode
of operation. More than often, different manufacturers also have different power ratings
for a similar sensor which makes it difficult to use the absolute numbers for ratings. So
instead of using the absolute values provided in datasheets, we use our understanding and
knowledge of these sensors and *ratings to quantify each factor relatively. The last factor
of Overall Usability in the tables is the linear average of all 6 factors mentioned above,
rounded to the nearest integer.

There are many parameters that can be used for direct or indirect assessment of the
health/activity of the bees [27]. However the following sections will discuss a total of 14
parameters for their relevance, and the factors which are associated with the potential use

of respective sensors in beehive monitoring systems.

2.1.1 Temperature

Temperature plays a crucial role in determining honeybee activity and health. Honey-

bees stop flying when the temperature outside the hive drops below 10°C [28]. At lower
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

Table 2.1: Parameters of very high relevance to bee health/activity and the factors which
determine the usefulness and practicality of the associated sensing equipment.

Parameter Relevance Cost Accurate | Energy Computationally | Deployable | Non- Overall

to Bees Effective Efficient | Simple Invasive Usability
Temperature | Very High Fok Ak ok kkk Ak kK ok kkk ok kkk Ak kK Hkkkok
Weight Very High * Fokhok Hokhk Hokhk *kKk *AAKK *kkK
Int. Imaging | Very High *k * * * * * *

temperatures, bees stay inside the hive forming clusters, and use their bodies to generate
essential heat. However, this metabolic activity requires them to consume the stored food at
a much higher rate. With enough stores of pollen and nectar, strong honeybee colonies can
survive the winter season in sub-zero conditions. However at the other extreme, honeybees
cannot survive at temperatures above 45°C [29, 30]. Figure 2.1 shows the temperature data
collected using a beehive monitoring system in different environments. The later portion
of the graph shows the thermoregulation of a strong bee colony. More details about studies

on thermoregulation of beehives are provided in the Appendix A.

Given that temperature provides very important information about the status and health
of bees, temperature sensors are one of the most commonly used components in the hive
monitoring systems. It can be observed from Table 2.1 that temperature sensors are an
automatic selection for any beehive health monitoring system as they have an excellent
profile. They are very easy to use in circuits, supported by a wide range of micro-controllers,
and are cheap to buy. Despite being small in size and very energy efficient, these sensors can
measure temperature with high accuracy of about 0.1-0.2 °C. They have a quick response
time of less than 1 second and converting voltage output to a temperature value requires
minimal amount of processing. All of these factors make the use of temperature sensors

for beehive health monitoring a very logical choice.

40°C
32°C

24°C

Temperature

16°C
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Figure 2.1: Difference between temperature variations indoor, outdoor, and inside a hive
located at Yanchep, Western Australia. Temperature readings from a BeeBot sensor [19],
inside the lab between 25" July to 29" July 2019, outdoor between 29" July to 13" August
2019, and inside a brood chamber of a hive from 13" August 2019 onwards during a
relatively cold and rainy period.
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2.1.2 Weight

Weight of a hive and its variations are the

most obvious indicators of the status, health Top Lid

and activity of honeybees. A good healthy
. . . Inner Cover
colony grows in numbers in favorable condi-

tions and also collects honey and pollen for
Honey Chamber

later consumption. This results in a net in-

crease in the weight of the hive over a period Queen Excluder

of time during spring and summer. More

details about daily weight variations of a
. . . . Sensor System
hive and the factors involved are provided in

Appendix B. If the weight of a hive is moni- Brood Chamber

tored accurately with a good resolution and

at an appropriate interval, the variation in Bottom Board

weight data can be used to extract informa-

tion about bee colony strength and foraging Hbestan

activity [32]. The initial studies about the

weight of hives and the factors impacting it Figure 2.2: Basic structure of a Langstroth

were conducted using a mechanical balance  Beehive. The designed monitoring system
in 1925 [33]. Since then, the weight measur- (BeeDAS) is placed towards the edge of outer

ing methods and techniques have improved MOst frame in brood chamber, marked as red.
significantly and a substantial amount of re- Note: The image is adapted from [31].
search has been reported on how to use the
weight of a hive to determine the health status of the honeybees [34]. Figure 2.2 shows the
structure of a langstroth hive, where the lower most compartment (called chamber/super)
is usually reserved for the queen and the brood, and the remaining chambers are used for
honey. A queen excluder restricts the queen to the bottom chamber, whereas the smaller
hive bees can pass through and access all parts of the beehive. Weighing scales are usually
placed underneath the hive stand to measure the weight of entire hive.

During honey flow season (when nectar is in good supply), the beekeepers regularly
replace the honey filled chambers with empty chambers to allow bees more space for honey
storage. For accurate, reliable measurements and for ease of use, the weight sensor or
weighing scale should be placed under a hive, where each hive can comprise multiple
supers/chambers. A single honey chamber can weigh up to 30 kgs, which means that a hive
with three honey chambers and a brood chamber can weigh up to 120 kgs. The weighing
scale needs to be strong enough to handle this much weight, and sensitive enough to detect
daily changes in the weight of hive with a resolution of few grams.

Another question about the hive weight scales is whether these scales should be a

stand-alone device or integrated with the monitoring system inside the hive. Weight
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

measuring instruments are very different in nature, size and hive placement when compared
to most of the other sensors used in the monitoring systems. All other components of a
monitoring system are usually enclosed in a single box or package, residing inside the
hive. Weighing scale is often the only major component sitting outside the hive. It can
either be designed to draw power from the monitoring system inside the hive and relay
sensor data back to the monitoring system using wired connections, or it can have its own
power supply, microcontroller and communication system so that it can work independently.
Drawing power from the internal system and communicating data using wired connections
is cost effective but the external wiring of such setup hinders the hive inspections and
transportation. On the other hand, a stand-alone system provides a lot of ease-of-use but

equipping each hive with such a scale can be prohibitively expensive.

2.1.3 Internal Imaging

Researchers have used imaging equipment inside the hive to capture photographs and
videos [35], in order to monitor the activity of honeybees. Imaging is one of the most
effective methods to gauge the bee population inside the hive, which is an important
indicator of overall beehive health. Moreover, presence of queen, brood, food, and disease
are also easier to identify using visual equipment. Figure 2.3 shows how easy it is to visually
differentiate between capped brood and empty cells in a hive frame. However the use of

imaging in beehive monitoring and its practical applications are a topic of much debate.

One of the fundamental requirements
for imaging is the presence of light, which
is scarce inside the hive. Having an artificial
light source inside the hive is invasive as
the heat generated from the light source can
disturb the bee controlled thermoregulation.
The light source and cameras being external
objects are also subjected to propolisation

by bees. This propolis blocks any light emit-

ting from the source as well as the view of
Figure 2.3: Two freshly hatched honeybees

' . . _ emerging from the brood cells. Capped brood
ing the images or video manually is only ap( empty cells can also be observed in this
possible once a week at most, as anymore frame. Image captured in May 2019 at UWA
Campus.

the camera. Opening the hive for captur-

interference will have negative impact on
the productivity of honeybees [14, 36]. A few studies have used transparent hives and
external imaging equipment [37], but only a part of such hive can be observed and the
information collected is incomplete. The cost of equipment used for imaging is high and

the amount of processing required to extract the information is far greater than any other
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Table 2.2: Parameters of high relevance to bee health/activity and the factors which
determine the usefulness and practicality of the associated sensing equipment.

Parameter Relevance Cost Accurate | Energy Computationally | Deployable | Non- Overall

to Bees Effective Efficient | Simple Invasive Usability
R. Humidity High Kok kkk Kok kk Kok kkk FKokkkk Kok kk Fokkk ok Fokkkok
Acoustics High Kokx Hokkk Kok Hokx KAk K KKK KAk
Ext. Imaging High *k Kk * * Kk ok kk ok Kok k

sensor used for beehive monitoring. The data generated by imaging systems is huge, hard to
store and process within the hive, and very costly to transmit from a remote site in real-time.

All these factors are reflected by low ratings for internal imaging in Table 2.1.

2.1.4 Relative Humidity

Relative humidity is the amount of water vapour present in the air compared to maximum
amount of water air can hold at that temperature, expressed as a percentage. Experiments
have shown that less than 40% relative humidity can dry the eggs and this results in
significant reduction in numbers of hatching eggs [38], so nurse bees cover the brood area
to decrease the loss of moisture [39]. Literature suggests that honeybees maintain relative
humidity levels above 50% in the brood area [40]. Honeybee larvae are fed with a jelly
excreted by nurse bees, and total composition of this jelly is around 67% water. If the
relative humidity in the brood area falls too low or gets too high, the growth of larvae is
adversely affected [41]. The relative humidity in healthy hives is maintained during the
brood rearing [42], however during brood-less periods, the relative humidity levels of the
beehive can fluctuate significantly. Figure 2.4 shows the difference in humidity levels inside
and outside a hive. More details on factors impacting the humidity levels inside the hive
and how honeybees regulate the hive humidity are available in Appendix C.

The humidity sensors are easy to use, small in size, and have low power consumption.

80%
60%
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Humidity

20%

0%
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Figure 2.4: Difference between humidity variations indoor, outdoor, and inside a hive
located at Yanchep, Western Australia. Humidity readings from a BeeBot [19] sensor,
indoor between 25™ July to 29" July 2019, outdoor between 29" July to 13" August 2019,
and inside a brood chamber of a hive from 13" August 2019 onwards during a relatively
cold and rainy period.
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

Inexpensive humidity sensors do not measure humidity with a high degree of accuracy but
are still a good fit for beehive monitoring systems, where strict measurement of the relative

humidity is not required.

2.1.5 Acoustics

Acoustic data from beehives is rich with information about the hive activity [43], and has
been studied in detail by researchers. Literature suggests that audio frequencies inside a
hive between 100 Hz and 1 KHz carry most of the information [44, 45]. Some beekeepers
can assess the state of a hive just by listening to the bee buzz, as the magnitude of bee buzz
is directly proportional to the bee activity. Bees generate different acoustic frequencies
during specific events, such as swarming, or when alarmed [46]. Swarming is an event
where the colony’s queen leaves the hive with a part of the bee population from an existing
colony to start a new colony. The queen is the single most important bee in the hive and
audio data can also be used to determine the absence/presence of queen in a hive [47].

Some of the earlier work on beehive acoustics is shared in Appendix D.

Bees are a very social species and regularly communicate with each other inside the
hive using bee dance (discussed later), audible frequencies generated through wings (bee
buzz) and using chemical signals also known as pheromones. Bees inside the hive generate
buzz dominated by a different set of frequencies depending upon the state of the hive or
mood of the honeybees. These sounds vary in amplitude and have reported frequencies
from sub 100 Hz to 3600 Hz [48]. However, most of the studies focus on frequencies lower
than 1 KHz as this band carries most of the information [45, 44]. Research in beehive
acoustics has shown that bee sounds can be used to detect pre-swarming, swarming, death
of the colony, excitement level of bees and to some extent flight activities. However, the
acquisition of sound is highly dependent on the location and placement of microphone(s)
inside or outside the hive. It is speculated that if utilized properly, the acoustics can provide
a lot of crucial information about the status of a hive such as being queenless, brood-less
and lacking in food. This makes acquisition and processing of acoustics a very interesting
and promising prospect for beehive monitoring.

The usage of acoustics in beehive monitoring has its own challenges which range from
the placement and protection of microphone to dealing with high quantity of audio data
and significant processing power required to process this data. Microphones placed outside
the hive, near the entrance are able to pick up the sounds of forager bees going in and out
of a hive, but are unable to detect sounds inside the hive. They are also exposed to weather
conditions and environmental noise. Microphones inside the hive can detect internal sounds
with good detail but not that of forager traffic. The internal microphones also need to be
enclosed properly to avoid propolisation from bees. This greatly attenuates the sound

reaching the microphone and forces the use of sensitive microphones and amplifiers.
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Continuous recording of audio becomes a problem as it generates a lot of data, especially
when sampled at high rates to analyse higher frequencies. Storing and/or processing this data
locally using the onboard microcontroller is only possible if recorded in small bursts, after
predetermined intervals of time. This reduces the space and power requirements but also
creates the risk of missing out on significant audible events. To extract useful information
from audio data, significant computational power is required, and catering for it onboard
the monitoring system means using bigger, more expensive micro-controllers/processors
resulting in increased power usage. If a large quantity of audio data is to be transmitted to a
server for processing, this brings power hungry and costly communication into the equation.
Thus finding the right balance for using acoustics in beehive monitoring is critical. This
is why most of the work in this domain is observed in experimental setups rather than in
commercial monitoring systems. However the promising potential of beehive acoustic data

makes a strong case for it to be part of beehive monitoring systems.

2.1.6 External Imaging

Imaging of bees outside a beehive also provides useful information about health of a bee
colony. Researchers have used standard imaging equipments to capture still photographs
and videos of hives [49], mostly targeting the hive entrance to track the foraging activities
and estimating the bee population. Unlike in-hive imaging, external imaging is non-invasive
and bees do not try to cover the imaging equipment with propolis. The issue with imaging
external activities and/or the entrance to the hive is that it provides only information about
forager traffic, which comes at a great computational expense as flight tracking and bee
identification algorithms are quite complex [50]. The amount of data generated from
external imaging systems is also huge and requires high bandwidth and computational
complexity for transmission and extracting the information respectively. Researchers have
also used embedded systems with 256-core low power GPU [51] for tracking the bee
activity at hive entrance in real time with good accuracy, but the employed hardware is
expensive. The power consumed by these GPUs is significantly less than standard GPUs
but for constant functioning throughout the day, these GPUs still demand power levels not
practical for remote deployments. Despite significant reduction in the cost of electronics,
high quality imaging equipment is still quite expensive, and most of the proposed imaging
based BMS use a single camera per hive [52]. For a large scale operation where the number
of hives can exceed thousand, this is not a practical approach. Safety and security of
expensive imaging equipment placed outside the hive when deployed in remote areas also

adds to the worry of beekeepers.

With so many practical limitations associated with the use of imaging in beehive health
monitoring, there is room for substantial research and innovation in this domain. Recent

research focused on using high speed cameras to track honeybees has shown promising
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

results [53] but it is again too expensive for practical use. As the technology progresses, the
algorithms improve on their accuracy and cost of imaging equipment gets lower, external
imaging will become more deployable for beehive health monitoring. Despite current
limitations in using the imaging systems for beehive health monitoring, external imaging is

placed in Table 2.2 with other parameters of high relevance.

2.1.7 Accelerometer

As discussed in section 2.1.5, bees communicate with each other through audible frequen-
cies or bee buzz, which is generated through wings. Before swarming, the bees inside
the hive communicate using 500 Hz - 600 Hz frequency band instead of normal 100 Hz -
300 Hz frequency band [44, 54]. The bees also dance to communicate, which is referred to
as a waggle dance [55]. This dance is mostly associated with communication related to
source of pollen and nectar [56]. The waggle dance creates vibrations that travel through the
hive. The frequencies of these dance vibrations are usually less than 300 Hz and honeybees
use special receptors in their legs to receive these vibration signals [57, 58]. More details
about honeybee waggle dance and the generated vibrations are provided in Appendix F.
Accelerometers are good at picking up vibrations, and can be used to collect information
about the pollen and nectar availability in the hive surroundings. However, honeybees and
their communication using vibration has evolved for use on wax made comb. In commercial
beehives, wax comb is present only in the middle of a wooden/plastic frame, which has a
two sided hanging connection with the hive structure. Hence, the signals of these vibrations
attenuate a great deal while travelling from one frame to another [57]. The impact of this
attenuation on communication of bees has not been studied in detail, but this attenuation
makes the measurement of vibration using accelerometers very difficult. However once
detected, these vibrations carry information about peak foraging hours and pre-swarming
states. It has also been suggested to use vibrations generated by an electronic device
embedded in the hive, to disrupt the pre-swarming communication and cause confusion
among the honeybees [24]. This will cause a delay in swarming and the beekeeper will
have time to intervene. Other than vibrations, accelerometers can also detect a change of
position, or the movement of the hive, which can be used to generate an alarm to indicate
unauthorized opening/movement of hive. Given this relevance between vibrations and hive

state, accelerometers have found a place in Table 2.3 with medium relevance parameters.

Table 2.3: Parameters of medium relevance to bee health/activity and the factors which
determine the usefulness and practicality of the associated sensing equipment.

Parameter Relevance Cost Accurate | Energy Computationally | Deployable | Non- Overall
to Bees Effective Efficient | Simple Invasive Usability
Accelerometer Medium ok kk ok kkk hkkk *kk *kk ok kkk Hokkk
Gas Contents Medium >k *kk Kok K KA kKA ok kk hk Kk hk Kk
Counters Medium *Kk *kk KAk Kok kkk *kk *% *kk
Ther. Imaging Medium *k KAk *kk Kk *kk Kok Kk Kk
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2.1.8 Gas Content

Gas emissions inside the hive are a good indicator of hive health [59, 60]. Some bee
diseases produce distinct smells [61], which if detected can help beekeepers either take
steps to cure the disease, or to prevent its spread to other hives. Honeybees like all other
living organisms, use respiration to move oxygen into the body and remove carbon dioxide
from the body. Since a bee colony consists of thousands of bees packed in a very close
space, the composition of air inside the hive is different from the air outside. In a healthy
hive, the levels and the fluctuations of CO, are correlated with the metabolic activity of
bees [62] inside the hive. See appendix E for some details on the work done on determining

the composition of gases inside a hive.

Just like temperature and humidity, honeybees also regulate the gas contents inside the
hive, especially the CO,. Excessive CO, triggers the fanning activity of bees which allows
the flow of fresh air into the hive. This ventilation with periodic fanning first allows air
current to move out of the hive, and then the fanning of bees at the entrance causes an influx
of fresh air into the hive [63]. This regulates the CO, levels between 0.1% and 4.25%, with
large colonies able to control this with greater precision [64]. The respiration in bee colony
decreases over night and this results in different levels of O, consumption between day and
night. It has been studied that honeybees control and bring the O, to lower levels between
15% to 7.5% inside the hive during winter and introduce a bee-induced hypoxia to reduce
the metabolic rate. With these low metabolic rates, bees are able to conserve energy and
consume less food and water, which allows them to last long winter seasons with limited
food stores [65]. Studies have also shown that different types of honeybees have different

metabolic rates, resulting in different rates of O, consumption [66].

This shows that CO,, O, and other organic compounds inside the hive atmosphere carry
information about the bee health and status. A steady level of CO, is an indicator of proper
air ventilation inside the hive which is a sign of healthy and active bee colony. The sensors
for measuring gas contents have improved in their accuracy and have become much smaller
over the years. However those with high accuracy are still expensive and need a controlled
flow of air for proper measurements. The sensors deployed in BMS are designed to stay in
hive for longer periods of time, however a lot of gas sensors require regular calibration in
order to maintain their accuracy. Most of the gas sensors are relatively much more power
hungry as compared to temperature and humidity sensors. Also, the large variety of gas
sensors required to pick up specific gas emissions need detailed justification given the
complexity and cost considerations. This means that the use of gas sensors in BMS is not

easy, but these sensors cannot be completely ignored given their relevance.
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2.1.9 Counters

Counters provide an alternate to imaging for estimating the bee population in a colony.
One of the earlier solution for counting bees using photoelectric counter was proposed in
1969 [67]. In this very limited setup, glass tubes were used to separate outgoing bees from
incoming bees for a single hive frame. Two digital counters kept track of bees passing
through each tube and a camera was used to periodically record the digital values of the
counters. Since then, the basic concept of digital counting has remained the same, but
different methods have been tested to make it non-invasive. Newly proposed microprocessor-
based systems allow multiple entrances with limited obstacles for bees and use algorithms
to improve the counting precision [68]. Such systems can also be integrated with other
monitoring systems used for measuring the internal parameters of the hive [69].

The traffic at the hive entrance is a good indicator of peak colony activity, preferred
flight timings, swarms, robbing and percentage of forager return. Foragers are a key link
between colony and food, which is essential for colony survival and honey production.
Forager activity is also an indirect measure of bee pollination around the hive site. However
the use of counters often restricts the movement of foragers, blocks the colony entrance
which impacts the thermoregulation and CO, levels inside the colony. Entrances of hives
are well maintained by honeybees but the use of counters and narrow channels makes it
difficult for the bees to clean them and restricts the disposal of waste from the hive. These
channels at times have to be manually cleaned to allow clear passage to the honeybees.

Some natural activities of honeybees offer challenges in counting the forager traffic.
Guard bees which are present at the hive entrance, often in varying numbers, can block
such counters. These bees often move around and can trigger multiple false counts. A
similar event can happen during the fanning activity when a large number of hive bees
(different from forager bees) move outside the hive and use their wings to generate a fresh
flow of air into the hive. The electronics of these counters is very sound but because of
complex bee behaviour, these counters are unable to differentiate between a forager and a
hive/guard bee, which compromises the accuracy of these counters. The restrictions caused
by such counters at the entrance are invasive which makes them not a preferred choice for

most beekeepers, as reflected in Table 2.3.

2.1.10 Thermal Imaging

Thermal imaging of beehives is another way to estimate the number of bees in the colony [70].
Some studies have also used infrared imaging [71] which is similar in nature. Information
available through thermal/infrared imaging is not as relevant to bee health as other imaging
techniques discussed in section 2.1.3 and section 2.1.6, but is still significant. Using readily
available low resolution thermal imaging devices, it is quite easy to observe the relative size

of a colony, also known as colony strength. It can be seen from Figure 2.5 that each hive
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has its own cluster of bees, at different locations inside each hive. The size and intensity
of yellow glow of each bee cluster is directly proportional to the number of bees in that
cluster. It can be observed that strength of bee colony in the hive on right is lower than the
other two hives. However thermal imaging has certain limitations which are discussed in
Appendix G.

Thermal cameras with low resolution
are relatively affordable and easy to use with
microprocessors. They have reasonable ac-
curacy and energy consumption is not very
high. However they still need some com-
puting power to extract information but be-
cause of low resolution and less detailed na-
ture of thermal imaging, this computation is
much less complex when compared to other
types of imaging. Thermal cameras have

similar issues as external cameras when it

comes to deployability because equipment

used outside the hive means more work re- Figure 2.5: Thermal image of three beehives
quired by beekeeper in managing the place- side by side showing the bee cluster as yel-
low glow. The hive on the right appears to
be weak compared to the hives in the middle

and the left. Image credits: Foxhound bee
ers and vehicles during replacement of the  company [72]

ments and connections. External equip-

ment also obstructs the movement of work-

full honey supers with empty ones. And
when BMS using thermal or infrared cameras are deployed at remote location, they add to

the security concerns of the beekeeper as sensors outside the hive are more prone to theft.

2.1.11 Global Positioning System

Monitoring systems equipped with Global Positioning Systems (GPS) are able to keep
track of their location. Commercial hives are moved from one location to another based
on availability of floral resources and weather conditions [73]. This tracking is important

for supply chain management and quality assurance as these locations are often used to

Table 2.4: Parameters of low or unknown relevance to bee health and the factors which
determine the usefulness and practicality of the associated sensing equipment.

Parameter Relevance Cost Accurate | Energy Computationally | Deployable | Non- Overall
to Bees Effective Efficient | Simple Invasive Usability

GPS Low *kkk Hokkkk *k kK kk *kkk Ak ko Hokkk

RFID* Low * Hokhk Hokxk Fokkk * *% *kk

Pressure Unknown Kk Kk Hkx ok kkk kK kk Hokkkk Ak ko Kok kokk

Magnetic-

Remanence | Unknown *kAK *k kA K Hokkkk Hokkkk Hokkokk Hokkk

* RFID tags can only be used with individual bees. Rest of the parameters / phenomena in this table are for entire colony.
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validate the floral sources of the honey, which vary from location to location. Monitoring
systems equipped with GPS also relay the current location of hives to the servers, which
uses the weather conditions at the hive location along with sensor data to estimate a more
accurate status of hive. However with no direct impact on health assessment of bees, GPS

is a low relevance parameter for beehive health monitoring.

2.1.12 Radio Frequency Identification

Radio Frequency Identification (RFID) [74] has been widely used in experiments related
to honeybees in recent years [75]. Tiny RFID tags can be placed on the back of honeybees
without significantly disturbing their regular activities. Each tag is uniquely identifiable
with the help of a RFID tag reader. Scientists and researchers place these readers around
the hive and in areas of interest, or move around with one in hand, and each time a tagged
bee passes by the RFID reader, the time and location are automatically recorded [76]. This
allows researchers to find out the flight track and pattern of bees in a vast area [77]. More
details on use of RFID in honeybee research can be found in Appendix H.

RFID has been helpful in studies involving honeybees but for long term monitoring,
tagging thousands of foragers in a hive is not feasible. Even if a few foragers are tagged to
get an estimate of flight patterns, these tags will have to be regularly put on new forager
bees as the life span of foragers is only a couple of weeks. Bees can travel upto a few
kilometers in search for pollen and nectar, thus equipping such large area around a hive site
with RFID readers is also not feasible. With applications limited to bee behaviour research

only, RFID is a parameter with low relevance.

2.1.13 Atmospheric Pressure

Atmospheric pressure and its impact on honeybees has been part of very few studies [29].
These studies did not find any direct relationship between atmospheric pressure and bee
health/activity, primarily because the experimental setups did not significantly vary the
atmospheric pressure. To properly test the impact of pressure on bee health and activity,
identical experiments need to be performed at different altitudes to vary the atmospheric
pressure. Some research indicates that for predicting bee foraging activity using local
weather conditions, use of atmospheric pressure can slightly improve the performance of
predictive models [78]. However, major change in atmospheric pressure is only observed
with a change in altitude, and significant change in the altitude also results in a change
in temperature and oxygen levels. For any study that aims to find the impact of major
change in altitude/pressure on bees, negating the impact of temperature variations caused
by altitude would be required. The atmospheric pressure sensors are low cost, small in size,
easy to use and have a decent accuracy, making them very usable. But because of their

unknown relevance, they have been placed in Table 2.4.
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2.1.14 Magnetic Remanence

The earliest work suggesting that honeybees may have magnetic remanence [79] was
published in 1978. Magnetic remanence is the ability of a material to retain magnetization
after being exposed to magnetic field(s). During the experiment, researchers applied a
strong field of about 700 gauss to 18 honeybees for a brief period. Subsequent measurements
found a permanent remanence induced in 15 of the honeybees, with an average strength of
2.7 x 10°® emu. Earth’s magnetic field is about 0.5 gauss, and any magnetic field induced
in honeybees because of earth’s magnetic field will be significantly smaller, most likely
by a factor of 1,400 compared to what the authors observed in the honeybees after the
experiment. Some studies [80, 81] have focused on the impact of magnetic fields on the
activities and flights of honeybees. However the magnetic remanence has never been used
to study bee health. It will be interesting to observe if easily available, small and relatively
cheap magnetometers are able to detect the tiny magnetic fields generated by honeybees.

This is why magnetic remanence is placed in Table 2.4 with unknown relevance.
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2.2 Analysis of Beehive Monitoring Systems in Literature

This section will analyse some of the beehive monitoring systems that have been proposed
in the literature. Many such systems have been proposed over the years but this discussion

will be limited to only the shortlisted systems which satisfy the following:

1. Experimental prototype(s) designed and tested
2. Evaluated parameter(s) with significant relevance to bee health/activity
3. Published as peer-reviewed work

These three criteria allow for more realistic comparisons and assessments. They allow
the discussion to be focused on systems which not only propose the design of a complete
practical setup, but also develop and deploy prototype(s) to collect the experimental data.
Recent technological advancements have helped reduce the cost, size and power consump-
tion of many electronic sensors, which make them very suitable for use in BMS. This
discussion will be limited to prominent systems proposed between 2012 and 2021 in this
comparative study. Older systems have a distinct disadvantage in comparison because
of the rapid advancement of tools, techniques and sensors. Ferrari et al. [44] is the only
exception of an older work to be included, as this work from 2008 is a very comprehensive
study on honeybee swarming detection system, and is included in this review.

With multiple disciplines involved in the design and development of BMS, it is not
possible for any proposed system to be comprehensive in all of the areas. So the aim is
to discuss different aspects of each shortlisted system, in order to come up with a set of
guidelines for designing a monitoring system. The selected beehive monitoring systems

are analysed on the basis of the following:

 Selection of parameters

* Design and methodology

* Data storage/communication
* Remote deployability

* Cost

* Data processing

We will perform a subjective analysis of the selected systems in this section. Some
particular details about these systems, with respect to the analysis criteria mentioned above,

are provided in Appendix L.

2.2.1 Selection of Parameters

As discussed in the previous section, selection of parameters for the assessment of bee
health is the most important aspect in determining the overall effectiveness of a monitoring

system. There are many drivers which form the basis of this selection, most common of
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Table 2.5: Shortlisted beehive monitoring systems from literature, along with the parame-
ters used in their design.

Very High Relevance High Relevance Medium Relevance
Temperature Humidity,
Howard et al. [37] . P ’ Acoustics, Gas Contents
Weight .
External Imaging
Temperature LA,
Tashakkori et al. [82] . P ’ Acoustics, -
Weight .
External Imaging
1. Accelerometer,
Murphy et al. [26] Temperature Humidity Gas Contents
1 Accelerometer,
Edwards et al. [59] Temperature Humidity Gas Contents
. . Accelerometer,
Murphy et al. [71] Internal Imaging Acoustics Thermal Tmaging
. Temperature, 1
Gil-Lebrero et al. [83] Weight Humidity -
Ferrari et al. [44] Temperature Humld,lty’ R
Acoustics
Anuar et al. [84] Ten.lperature, Humidity InfraRed Counters
Weight
Temperature, Humidity,
Anand et al. [85] Weight Acoustics )
. Temperature, Humidity,
Konig et al. [86] Weight Acoustics Gas Contents (VOC)
. Acoustics,
Kulyukin et al. [87] - Video and images -
Kridi et al. [88] Temperature - -
Chen et al. [35] - - Infrared Imaging

these are the research interests of those proposing the system, the intended objectives, and
the availability of required tools and other resources. Table 2.5 provides a summary of
parameters used by the systems included in this analysis. None of the selected systems
use any of the low relevance parameters from Table 2.4, so this category is omitted from
Table 2.5.

The purpose of this evaluation is to assist the sensor selection process for a beehive
monitoring system suitable for remote deployments. From Table 2.5, it is evident that the
majority of the researchers agree on the importance of parameters such as temperature,
weight, humidity and acoustics. As discussed in previous section, imaging systems do not
fit the profile of a remote beehive monitoring system because of high power consumption
and the amount of data they generate. Counters at the hive entrance are intrusive, so they
should also be excluded from the design. Accelerometers and gas sensors have a medium
relevance with bee health/activity, but their better usability makes them a good candidate
for inclusion in the design of a remote beehive monitoring system. From sensors with
unknown relevance, atmospheric pressure sensors, and magnetometers also have a suitable

profile.
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

Based on relevance with bee activity/health and suitability for remote deployment,

following sensors are shortlisted for our design of the beehive monitoring system, namely:

Temperature
Humidity
Atmospheric pressure
Acoustics
Accelerometer

Gas sensor(s)

Weight

A

The functionality of these sensors in designed monitoring system is discussed in detail

in the following chapters.

2.2.2 Design and Methodology

This section analyses the proposed designs of beehive monitoring systems, along with
different methodologies used by the researchers during sensor deployment and testing. The
objective is to identify a design which is most likely to work in a remote environment, and
can be relied upon to collect data from beehives. An analysis of different methodologies by
different researchers will also help guide the formulation of a methodology for the experi-
mental deployment of our proposed system. Researchers in this work [37] designed and
developed their own sensor system including the weighing scales, and used a commercial
beehive weighing scale only to validate the results. Use of commercial equipment in the
experimental setup significantly limits the ability to customize the design. Designing a
system from scratch, including the weighing scale is not easy, but it allows an absolute
control over components used in the data collection process which is important. However,
the authors collected sensor data at such a high rate that it could not be transmitted in
real time. Onboard storage was used to save this data, which had to be manually retrieved
every few days. This approach of manual data retrieval does not work well for remote
deployments. Hence, the data generated by the system to be designed needs to be small
enough to be transmitted in real time.

Researchers in this work [82] opted for a plug and play design, which allowed for easy
replacement of components. For a prototype/test-system, this is a very desirable feature
which allows rapid replacement, facilitates testing, and changes in the design. In the system
proposed by researchers, a client could easily relay commands from a terminal allowing
control over the system. This bi-directional communication becomes even more useful
in remote deployment, where the beehive monitoring system can be configured remotely.
Authors in [26] explored the use of a dedicated transmission system to pool the data from
local monitoring systems, and transmit it over long distance. They also explored the use of

dedicated sensor systems with different roles, such as one for gas detection inside the hive.
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Sensor placement in the roof of the hive resulted in significant variations in the recorded data
because of the high influence of external hive conditions. This signifies that the selection of
location for placement of sensors inside the hive is very important. Also, using a variety of
systems for different roles not only increases the overall complexity of the design, but can
also create bottlenecks. In case the system responsible for long-range communication fails,
none of the working systems at that particular site will be able to transmit the data. Having
each system as a stand-alone device increases the cost per system, but also improves the
overall reliability of the system. The authors also used official meteorological data for their
hive state classification, which is a good approach to avoid setting up dedicated weather
stations for this data.

Infrared imaging has also been explored for its use inside the hive [71], however it was
only tested in a hive without bees. In the same setup, the authors used low sampling rates of
100 Hz to sample the audio data to minimize the data rates. This low sampling rate can only
monitor bee buzz up to 50 Hz, and fails to collect any information in higher audio bands.
For remote deployment of a monitoring system, the reduction of data for communication
is important, but it should not cause a significant loss of information. Use of multiple
temperature sensors inside a single beehive was also explored in a study [83]. Given the
importance of temperature inside the hive, multiple sensors can collect more information
about the thermoregulation of the bee colony compared to a single temperature sensor.
However from a practical aspect, this can create difficulties for the beekeeper. The extra
wiring inside the hive, with multiple frames connected to a temperature sensor each, make
the regular hive inspections as well as swapping of frames difficult. The authors also used
a single load cell to measure the weight of the hive with a resolution of 100 grams. This
resolution is enough for tracking the weight change of a hive over multiple days, but cannot
be used to monitor minor weight variations within a day. However this monitoring system
was used in a promising 20 bee colonies, which is significantly more than the number of
hives used by other systems analysed in this study.

An important study on early detection of swarming [44] used temperature, humidity
and acoustic data. The main finding from this study was that bee noise generated during the
swarming had a much higher Power Spectral Density (PSD) when compared with the PSD
of standard bee buzz, specially in the 500 Hz to 1000 Hz band. To monitor the frequencies
of up to 1000 Hz, the sampling rate of the audio data should be at least 2 KHz. This
study [85] also used the audio data from inside the hive to detect swarming. The authors
used a 256 point Fast Hartley Transform (FHT) to extract frequency components from the
audio data. This is a good approach as the audio data with high sampling rate is difficult to
transmit from remote sites. The extracted frequency components are much smaller in size
and easy to transmit. For a better resolution, a 2048 point transform can be used given the

microcontroller unit within hive is able to handle the computations involved.
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

Authors in this study [84] collected data from a hive with a 7 second interval. This
generated 12,200 data points in an experiment of 36 hours in duration. The natural activity
of honeybees and the variations within hive micro-climate change with different seasons.
Data collected with a larger interval between samples, and over a longer period of time
most likely carries much more value. But within each sample, the data such as audio and
vibrations should be collected with appropriate sampling rates, and for reasonable durations
to capture adequate amount of information. This however is limited by the amount of

computing resources available in the monitoring system.

Work of [86] focused on Varroa mite infestation. Until 2022, Australia was the only
country in the world free of Varroa mites, but first cases of this mite were reported in New
South Wales in June 2022. The authors in their design used Volatile Organic Compounds
(VOC) gas sensor in an attempt to pick up the Varroa infestation. Use of gas sensors is quite
challenging, which has also been discussed in Section 2.1.8. However if used correctly, the

gas sensors can add a value to monitoring systems which other sensors cannot.

Custom monitoring system BeePi [87] is one of the few works where the collected
dataset has been shared publicly. Reproducibility and replicability were two fundamental
objectives of the BeePi project, so that others may repeat the experiments and replicate the
design at minimum costs. Also, the system was designed such that sensors do not interfere
with the natural activity of honeybees. For this reason, the microphones were deployed
outside the hives, above the landing area of foragers bees. This setup maximizes the audio
data collection from forager traffic, but is less sensitive to bee buzz inside the hive. External
microphones are also prone to picking up noise from hive surroundings. Authors monitored
hives with different species of honeybees, an aspect which is often overlooked by other
researchers. As the bee research community develops, it is access to complete datasets
such as this, that provide significant value to data analysis and research efforts towards

smart beehive monitoring systems.

For a lightweight, low energy and an economical solution, a data collection platform
was developed with very limited computational capability [88]. This platform was deployed
in two hives and recorded the inside temperature for multiple days. Authors used k-means
clustering algorithm on the collected temperature data from the healthy hives to identify 6
temperature patterns for daily variations based on hourly readings. These patterns were
used to define a threshold for acceptable micro-climate inside the hive. This approach of
classifying the hive state using the deployed sensor system, and communicating just the
state is very interesting. However given these states were determined using limited amount
of data, it begs the question about the accuracy of this approach for hives from different

geographic locations.

In a very unique experiment [35], authors used an infrared CCD camera, and bees
tagged with different characters to observe foraging patterns. This approach is only feasible

for a short term study on forager activity. In practical systems, tagging bees to monitor
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their activity is not possible, as the number of foragers inside a hive can be in thousands,
and foragers die after about two weeks of foraging activity. Also, such setups force the
bees to use specific passages at the hive entrance, which is intrusive in nature and slows the

natural activity of the bee colony.

2.2.3 Data Storage/Communication

This section analyses the data storage and communication capabilities of the shortlisted
systems. Onboard SD cards were used by [37] to store small amounts of sensor data, and
an external hard disk drive for large audio and video data. The collected data had to be
manually transferred every few days to make space for new data. Such a setup is very
demanding even for research purposes as it requires constant involvement of personal to
retrieve the data. For any system collecting data from a remote site hundreds of kilometers
away, this becomes almost impossible. The data communication system should allow for
stand-alone operations without human involvement. Authors in this work [82] also used
SD card on raspberry Pi to temporarily store the high bandwidth audio and video data. The
sensor data from low bandwidth sensors was transmitted using Message Queuing Telemetry
Transport (MQTT) [89] protocol. MQTT is a very suitable option for data communication
in low data rate systems. In most cases, beehive monitoring systems transmit data from
machine to machine, which lightweight MQTT protocol can handle very efficiently.

These two studies [26, 59] utilized low power RF modules for communication between
two hive systems and a third base station system. The base station acted as a 3G radio
bridge for long distance communication for the hive systems, and combined their data into
a single file to upload it to a server. All the systems were designed to transmit once per day
which reduced the power consumption, but also limited the real time flow of information to
the beekeepers. For the purpose of data collection from beehives, real time communication
has a low priority. Pooling the data for transmission can conserve the power, as overheads
of establishing a connection and the handshaking protocols can be minimised. This can
become very useful when system has a low battery and conserving the power becomes a
high priority. In another study by same authors [71], the system was designed with cellular
communication capability without any bridge. This system had an advantage of ultra-low
power operation and allowed remote deployment of beehives depending upon the cellular
coverage in the area.

For data transmission from hives, this work [83] used low-rate wireless personal area
network. Data requests were periodically broadcast by server to collect data from hives in a
synchronised manner. A database was used to store the beehive sensor data, with backups
regularly made. Beekeepers were able to access the hive data using internet. This is one of
the most complete data communication and storage systems analysed in this chapter. Some

researchers have also explored the use of high gain antenna [88] to establish a wireless link

31



2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

between monitoring systems and the base station. Use of directional or high gain antennas
can help improve the coverage area, but these antennas are mostly mounted externally on
the hive structures. This becomes a problem for beekeepers when they decide to move the
hives from one site to another. The rectangular structure of hives allows for very compact
placement on the trucks. With external antennas, the hives cannot be stacked right next to
each other. Disconnecting the external antennas before hive transportation and connecting
them again at the new site is time consuming. Use of high gain antennas inside the hives
is only possible if antennas do not take up a lot of space. Directional antennas inside the
hive are difficult to manage because majority of beekeepers prefer certain orientations with
respect to the sun while placing the hives. Adjusting the direction of the internal antennas

at every new site again adds to the complexity, and decreases the user friendliness.

2.2.4 Remote Deployability

Remote deployability of a system can be gauged using two attributes; ability of the system
to collect and transmit the data without human involvement, and its ability to perform
with limited power resources. The communication capability of systems has already been
discussed in previous section. All the systems which used local SD cards and external
hard drives to collect the data without any data transmission have poor deployability.
The dependence of a system on short range communication such as WiFi also hinders its
deployability in remote areas, unless a dedicated WiFi gateway is put in place for the internet
connectivity. This section only analyses the shortlisted systems which were designed to

perform with limited power resources.

Authors in this design [26] included solar panels for energy harvesting. The sensor
systems used 6.5 V, 205 mA solar panels with 6600 mAh batteries, whereas the base station
featured a sightly bigger solar panel with 7 V, 500 mA rating. The gas sensors however
were very power hungry and the solar panels were inadequate to power these systems.
An improved version [59] used the same old setup with better deployability by reducing
the number of samples of gas collection from 6 to 3 per day. This provided a significant
improvement in battery performance as the installed solar panels were able to replenish this
smaller battery drain. Solar panels have significantly improved their efficiency since these
studies were conducted in 2015-16, and small solar panels with 16cm x 8cm dimensions
are now able to generate up to 2000 mA of current with a 5-6 volt output. This has enabled
beehive monitoring systems to use a larger number of sensors, and collect data more
frequently. Authors in another work [71] implemented energy harvesting through solar
panels using a 1000 mAh battery, which would last several days even without sunshine.
These systems compared to their previous setups were much more energy efficient, and the
total energy requirement for each system could be met using the solar panels. However,

this setup generated a lot of image data, and authors did not test the working of 3G network
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to transmit this data to server. Communication system is one of the most power hungry
aspect of monitoring systems, and a system is only considered self reliant if it can support
all of its power needs.

In this work [83], authors claimed that their proposed system is compatible with solar
panel for charging the batteries but it was not tested. Batteries and external power supply
were used for the systems. The designed system was analysed and found to be energy
efficient with data transmission as the biggest consumer of energy. The batteries could last
3 days without charging, which is a reasonable period if solar harvesting is available. Some
researchers have also used power packs [88] composed of AA batteries, however no details
were provided on how long these batteries were able to power the monitoring system.

Authors in this work [87] experimented with three types of power supplies: solar,
battery, and AC power. A single system required 440 mA of current, primarily because
of high power consumption of the Raspberry Pi and its camera. Authors found it difficult
to sustain this much power usage using solar panels, especially in winter when days were
short and often cloudy. The batteries also did not last long in colder temperatures and
replacing them frequently at remote sites over a sustained period became logistically very

difficult. For these reasons, authors eventually used AC power for all of their systems.

2.2.5 Cost

From a beekeeper’s perspective, cost of a beehive monitoring system is one of the most
important factor. Commercial beekeepers only invest in monitoring systems if they are
convinced that they will get a good value for their money. This section discusses the
proposed designs which have provided a cost analysis. For any system designed for long
term deployment, there are running costs involved as well. This includes cost of electricity
if powered using AC lines, battery replacements, data communication/internet costs, and
those associated with human involvement for data retrieval if applicable. These costs are
hard to estimate for research systems, and are not discussed. Authors for their design [37]
provided a cost analysis of the components and it varied based on the parameters used
for monitoring. For a complete system which also included video monitoring equipment,
the proposed system cost around GBP 190 whereas the Arnia system without any video
monitoring capability cost around GBP 300. The proposed system in this setup included a
weighing scale, whereas it had to be purchased separately for the Arnia costing an extra
GBP 700. This shows that the proposed system had a very cost effective design when
compared to commercially available Arnia system.

This system [82] was designed with an objective to be cost effective. The hardware
cost of a single unit is reported at USD 106 by the authors. This includes Raspberry Pi 3
Model B with its power supply, 16 GB SD Card, Raspberry Pi Camera, USB microphone

and the cost of materials for printing the 3D case. However, the authors did not report the
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

cost of sensors and the weighing scales.

These two studies [26, 59] used Libelium Waspmote and other commercially available
Libelium sensors, all of which come with a high price tag of AUD 800 or more. Using a few
Libelium systems for experiments may be a feasible option, but using a large number of such
for experiments is impractical. The Libelium sensors are designed for use in environment
which requires a low density of deployment, whereas beehive health monitoring systems
require a much higher density of deployment within a single hive site. High costs of these
environmental sensors also make them a poor fit for commercial beekeeping. The cost
of equipment used in this work [71] is lower than the previous setups [26, 59] by same
researchers, as this new setup is based on raspberry Pi and other readily available sensors.
Waspmote was used only to control the boot cycle of Pi boards, which helped reduce the
power costs.

Some authors have used a modular approach [86] where different components can be
added to the system. The very basic version of this system consisting of raspberry Pi Zero,
temperature, humidity and MEMS microphone cost less than USD 30 for components.
However the addition of modules for weighing scale and gas sensor will significantly
increase the cost. Authors in this work [88] estimated that the cost of a minimum viable

product for their proposed system would be between USD 150 to 200.

2.2.6 Data Processing

Data processing is a very important aspect of modern beehive monitoring systems. The
ability of a system to decide upon the accurate state, predict the future state of a hive, and to
provide valuable insights about bee health is what makes beekeepers invest in these systems.
For this reason, many researchers are working on improving the decision making aspect
of beehive monitoring systems. This section looks into the data processing capabilities of
systems included in this analysis.

Applications and web tools were developed by researchers to capitalise on rich audio and
video data recorded by Beemon [82]. The authors briefly discussed the image processing
(BeeVee), audio processing (BeePhon) and streaming (BeeStream) tools in their work.
BeeVee uses object detection and tracking techniques on the video stream obtained from
the hive entrance to detect the honeybees and provides an estimate of the forager traffic.
This tool can be used to automatically analyse the bee data and generate alerts when needed.
BeePhon allows visualization of the honeybee audio data, and can be used to analyze
audio data for a specific time period. A web interface for the Beemon project provides
access to the BeeStream component of the project, where users and researchers can live
stream video and audio from beehives, and view the video analysis data related to forager
traffic superimposed on temperature and humidity data. Users and researchers can also

use the available tools to label the collected data. The labeling/annotation of data is a very
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important step which allows the training of supervised machine learning algorithms, and
the development of smart beehive monitoring systems. Machine learning is a branch of
Artificial Intelligence (AI) which uses data and algorithms to mimic another process, or
imitate a human trait.

Researchers used multiple experimental setups [59, 71, 26] to collect a substantial
amount of beehive sensor data. They were also able to incorporate a classification decision
tree for beehive states using this data, and used text messages to alert the beekeeper in
case of specific events. A total of ten classes were used for the identification of crucial
colony states, including healthy and unhealthy conditions. Authors expressed their desire
to work towards decision making capability of monitoring systems in the future. Machine
learning has shown a lot of promise in many areas but requires extensive amount of data
and labelling to generate quality results. Future endeavours of authors [90] show that they
collected more data through sensor deployments, and used big data and machine learning
to develop a commercial product.

An efficient, low power algorithm was designed and implemented on the monitoring
system within the hive [88] to monitor the hive temperature. The system generated alerts
for the beekeeper only when the hive temperature or micro-climate deviated from the rec-
ommended temperature patterns, which allowed for significant reduction in communication
data. These patterns were determined by collecting temperature data from healthy hives
during different periods of time. However, the data used for determining these patterns was
collected only from two hives at the same site, over a 40 day period. This raises questions
about applicability of the proposed algorithm in other regions where environmental tem-
perature variations may be very different, with different hives with different micro-climate
patterns. But the overall approach of the authors and the experimental results hold a lot of
promise.

Researchers have also used Circular Hough Transform object detection [91] to locate
individual honeybees in video frames captured using IR CCD camera [35]. Bees from the
hive under investigation were marked with unique circular tags placed on bee’s thorax. A
positioning dot on these tags was used by the authors to help identify of the orientation
of characters on the tag. The extracted characters from tags were then segmented and
classified using a support vector machine (SVM). This identification of characters on bee
tag allowed the identification of each bee and the orientation of the tag allowed the authors
to distinguish between outgoing and incoming bees.

Authors in this work [86] used the vibration and sounds inside the hive for classification
of different states of hives. For this classification authors used Mel-Frequency Cepstral
Coeflicients (MFCC) [92] feature space plots on acoustic hive data acquired through MEMS
microphone. The classification results with high accuracy show the aptness of low-cost

MEMS microphone and electronics used in the system.
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This work [87] performed a comprehensive analysis of data collected from beehives.
Each system saved a 30-sec audio from inside the hive every 15 min, and these files were
later split into 28 audio clips of 2-sec duration each, with a 1 second overlap. Authors
obtained the ground truth by listening and manually labeling these 2-sec audio samples.
Three human listeners divided these recordings into three categories i.e. bee buzzing, cricket
chirping, and ambient noise. Classification was performed on raw audio data using different
machine learning techniques. The authors provided results for these classifications, with
Random Forest generally providing good accuracies. They also evaluated the classification
of these datasets using automated feature engineering. These features preformed differently
on different datasets, the reasons for which were not discussed by the authors. One reason
could be that the audio data from hives changes significantly over different seasons, and
different feature extraction techniques suit different seasons, hence providing the variation
in results. The authors also tested different models for classification of images as bees,
shadows of bees and no bees. This required extensive manual labeling of image data. From
2020 onwards, the authors also analysed the traffic of honeybee using video data, and
classified it as incoming, outgoing, or lateral. This work also investigated the possible
correlations between audio and video bee traffic and weather conditions at the hive site.

Majority of the systems analysed in this study have not used machine learning exten-
sively, as the emphasis of most researchers was on developing a system and collecting
the data. However some studies have used machine learning on existing beehive datasets
for various tasks. One of the recent work on swarm detection [93] uses Deep Recurrent
Autoencoders to detect the anomalies in beehive data. The dataset used in this study was
collected from multiple hives using multiple temperature sensors per hive, along with
weight, humidity and carbon dioxide sensors. Using Long Short Term Memory (LSTM)
based Autoencoders, authors tested different sensor configurations, and also investigated the
impact of sensor placement on swarm detection. The authors conclude that Autoencoders
can be used to detect other anomalies in the hive as well. Later chapters of this thesis will
discuss how existing machine learning models designed for various tasks can be adapted

for tasks related to beehive monitoring.
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2.3 Commercially Available Beehive Monitoring Systems

This section will analyse a number of commercially available beehive monitoring systems.
These monitoring systems use a variety of sensors, different placements within the hive,
various modes of communication, measuring frequencies which at times are configurable,
and have different power options. Some of these systems offer modular approach where
the user can opt for different modules to have different features, which to a large extent
determines the cost of the overall system. A few of these systems (i.e. BeeBot, Broodminder,
BeeMate) were tested to a limited extent in our hives, but it was not possible to practically
test all of the commercially available systems. So we rely on the information provided by
the manufacturers for this analysis. Some manufacturers do not provide the technical details
of these systems on their websites, and some require a request to quote the price. Arnia is a
popular beehive monitoring system, however we were unable to get a response from the

manufacturers about the technical specifications and a cost breakdown of the system.

Bee Hive Monitoring [16] is a Slovakia based manufacturer of monitoring systems and
they offer three different modules. First module which comprises three sensors is called
‘Heart of Hive’, which is placed on top of the honey frames. This module costs US$ 56 and
can measure the inside temperature, humidity, and sound. This battery powered module can
run upto one year on a single fully charged cell. Second module, the hive scale, comprises
two wooden planks with load sensors inside for weight measurements. This scale is capable
of measuring upto 200 kg in weight. These two planks are connected with each other using
a removable cable which allows for ease of use as the distance between planks can be
adjusted as per width of the hive. This also makes the weighing scale relatively cheaper,
costing around US$ 100, but results in a low measuring accuracy of +1 kg. However it has
a long battery life of 2 to 5 years. Both of these modules are equipped with a short range
communication module (not specified, but likely bluetooth), which enables connection
with a smart phone to read data directly from modules. Using the data collected from the
sensors and hive scales, the system can generate alerts for events such as loss of the queen
bee and robbing. Manufacturers claim to be able to predict swarming weeks in advance,
alongside estimating the strength of the colony during winter. Third module offered is the
GSM based gateway, which can be used to transmit the data to a server using a cellular

network. This module costs US$ 101 and enables access of hive data using the internet.

Table 2.6: Feature summary of some commercially available beehive health monitoring
systems, along with their cost in USD.

Commercial System Temperature | Humidity | Weight | Acoustics Other Communication Cost
Bee Hive Monitoring v v v v GPS Tracker GSM $313
BeeBot v v X v - WiFi $189
Broodminder v v v X - Bluetooth $240
Hivemind v v v X Bee Counter Satellite $1,140
EyesOnHive X X X X Video Monitor WiFi $425
BeeMate v v v v Video Monitor WiFi $580
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The battery life of this module depends upon the measuring frequency of sensors, quality
of cellular network, and can vary between 3 to 12 months. Manufacturers also offer a GPS
tracker for US$ 56 to track the hives in case of theft.

BeeBot [19] from Pollenity is another European system which uses a single module for
the monitoring of hives. It is capable of measuring temperature, humidity and records the
buzzing frequencies of bees inside the hive. It is packaged in a wooden casing to make it
less intrusive for honeybees, and its dimensions allow for an easy fit to a honey frame. It
transmits the sensor data to the cloud using local WiFi network, and the measuring frequency
can be configured as per user needs to optimize power usage. It comes with a rechargeable
battery, and can run on a single charge for 6 to 8 months. It costs US$ 189, however the
manufacturers provided us 10 of these beebots, free of cost for research purposes. These
systems and the online ‘BBoard dashboard’ for data visualization have been insightful for
our understanding of some of the honeybee behaviour. Figure 2.1 and Figure 2.4 show

temperature and humidity data acquired through BeeBots placed in our hives in 2019.

Broodminder [20] is a beehive monitoring system from USA. The BroodMinder
Citizen Science package includes three modules in total, two for measuring temperature
and humidity each, and the third for measuring the weight of the hive. The sensors are
placed either at the top, or at the bottom of the brood chamber and are accurate upto 0.5
degree Fahrenheit and 3% relative humidity. The weighing scale can be placed either at
the front, or at the rear end of the hive. One of these systems was tested in our hive, and to
keep the hive balanced, a support of same height had to be added under the rear end of the
hive. In case of a perfectly balanced hive, the scale effectively measures half of the hive
weight. The weight scale can support a total hive weight of upto 180 kg, with a resolution
of 5 grams. This temperature compensated module is powered using a coin cell battery,
which lasts for six months. This complete package costs US$ 240 and uses bluetooth to
connect to the user’s smart phone. Establishing bluetooth connections with the device/scale
using the android application was found to be troublesome. To allow for data transmission
to the server and for continuous monitoring, Broodminder also offers ‘BroodMinder-HUB’
with two variants, Cellular and WiFi, which was not tested. The Cellular version uses
a mobile network to connect to the internet and costs US$ 299 plus US$ 99 for cellular
subscription and MyBroodMinder dashboard premium. The WiFi version costs US$ 299
plus MyBroodMinder dashboard and makes use of local WiFi network to connect to the
internet. The subscription for MyBroodMinder dashboard costs US$ 54 to US$ 108 for a
single Cellular/WiFi hub per year.

Hivemind [18] is the brainchild of Brush Technologies, a New Zealand based internet-
of-things design company. In contrast to other monitoring systems, Hivemind uses a
satellite hub to transfer hive data to the server. This allows for remote deployability of
this system in areas with no cellular coverage. The sensing system ‘Hive strength monitor’

can measure temperature and humidity with a resolution of 0.1 °C and 1% respectively,
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and has an accuracy of 0.2°C for temperature and 3% for humidity. It also reports the
number of bees entering or leaving the hive every 3 hour periods, which can be adjusted for
different durations. This monitor costs US$ 210 and is powered by 2 AA 1.5V replaceable
Lithium or Alkaline batteries with a battery life of up to 1 year. It communicates the data
to a satellite hub, which has to be within a proximity of 10 to 50 meters. The hive weight
scale [94] has a very similar design to that of Bee Hive Monitoring (discussed above), and
requires the two parts of weighing scale to be placed under the hive for measurements.
This scale costs US$ 300 and has a measuring resolution of 100 grams, with an accuracy
of 1% kg + 2% of hive weight. Maximum measuring weight of the scale is 300 kg and is
powered by 2 AA 1.5V replaceable Lithium or Alkaline batteries, which can last up to 1
year. This module reports data to server via satellite hub, or can act as a stand-alone device
by speaking the hive weight at the push of a button. The satellite hub comes with a built
in GPS, has a default rate of transmitting 4 reports per day, and can connect with upto 25
devices. It is powered by 4 AA 1.5V replaceable Lithium batteries and costs US$ 630.

EyesOnHives Scout B [52] is an imaging based monitoring system developed by
Keltronics, USA. This system uses a camera and a computer, packed together inside a
single module, placed one to two feet away from the hive and pointing at the hive entrance.
It counts the bees going in and out of the hive, alongside measuring the flight behaviour of
the hive. Colony activity patterns are tracked over time using computerized video analysis
and hours of video is translated into an easy to understand, visual, real-time summary for
beekeepers. However this system requires 120V power for the computationally hungry
hardware and WiFi connectivity to transmit the data to the user. Despite having limited
deployability for remote monitoring, this system costs US$ 425 excluding tax.

BeeMate [95] is an Australian beehive monitoring system powered by Artificial In-
telligence (AI). The primary functionality of this system is video monitoring, but can be
purchased with the add-ons of temperature, humidity, sound and weight sensors. The
video data from each hive is analysed using deep neural networks to estimate the forager
traffic. This information along with other sensor data is available to the users using a web
dashboard. Users can also view the live streaming of video from the hive entrance. The
system uses WiFi connection to transmit the high bandwidth data to the web server. It also
requires access to 220 volt AC power to operate. Two of these systems were tested in our
hives, and the forager traffic analysis using the dashboard was useful in validating some of
the data collected using our own sensor systems. However connecting WiFi based devices
to University WiFi network was challenging. BeeMate is also part of The Sentinel Hive
Network, which is deploying over 1,000 Al powered Smart Beehives globally by the end of

2022 in locations of strategic bio-security importance.
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

To summarise the major aspects of commercial beehive monitoring systems, most of
the commercial systems deploy sensors in a single package inside the brood chamber. The
hive scales are consistently the most expensive component of monitoring systems, and
their placement under hive adds to the complexity of the design. Most systems only have
short range communication capability, with a separate WiFi to 4G gateway required at the
hive site for long range communication. But these gateways are expensive to purchase,
require additional monthly/annual subscriptions, and can only support a limited number
of monitoring systems at the hive site. And 4G gateways are very dependent on cellular
coverage, which is a problem in remote regions of Australia. For power, most systems use
replaceable batteries, with some relying on AC power. None of the discussed commercial

systems use solar panels to power the beehive monitoring systems.
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2.4 Research Gaps

This section discusses the gaps in existing knowledge on beehive monitoring. First and
foremost is the use of a small subset of parameters for experimentation in this area. Different
researchers focus on different parameters of hive monitoring, based on their area of expertise.
Little attention is given to experiments which evaluate a wider set of parameters and their
various combinations for different tasks. It is not practically feasible to test a huge number
of parameters in a single study, but it is required to be as thorough as possible. The complex
behaviour of honeybees demand the use of multiple parameters in BMS to get an accurate
picture. Each parameter can help identify and/or predict only limited aspects of bee health.
Using multiple parameters not only gives a more detailed picture about the bee health and
activity, but also helps decrease the impact of inaccuracies in the measurements of different
parameters. Proper evaluation of sensors for different tasks of beehive monitoring is very

important aspect of system design, and largely missing from the literature.

While it is important to investigate different sensors for use in beehive monitoring system,
it is also vital to improve the cost effectiveness of the system. The cost of monitoring system
increases with the increase in the number of sensors. The low cost systems proposed in
literature often compromise on the number of parameters which are monitored. One of the
most important parameters of a beehive is its weight, which requires an expensive scale. It
is very difficult to add a reliable weighing scale to a cost effective design, as beehive scales
usually cost more than the rest of the monitoring system put together. Up until now, no
work has been done towards estimating the weight of the hive using other not-so-expensive
sensors. A system capable of estimating the hive weight with reasonable accuracy will

significantly reduce the purchase costs of monitoring systems.

Most of the experimental setups reviewed in this study used only a few hives, and at times
only a single hive to collect the beehive sensor data. We understand and have experienced the
issues involved in experimenting with multiple hives, especially those related to beekeeping.
These issues are almost, if not always, outside the expertise of researchers. The time
required in the field to manage the hives, maintain the monitoring systems and the logistic
complexity increases multiple folds with the increase in the number of hives. However, the
data collected from experiments is not reliable unless it is from multiple hives deployed in
varying conditions. Deploying multiple hives for experimentation is only possible if there
is a strong collaboration between beekeepers and the researchers. Both working closely

together is the only way to setup experiments and collect reliable data on a wide scale.

Another major problem in this area is the absence of any standard framework for
experimentation and data collection. Every experimental setup analysed had its own
desired placement of sensors, number of sensor systems, and the frequency of reading the
sensor data, based on available resources and personal preferences. Some setups mentioned

the details of equipment used, the environmental conditions, location of experiment, time
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

of the year and some didn’t. This means that the data collected from one experimental
setup cannot be merged with data collected from another. Most of the researchers in this
area do not make their experimental data publicly available. A few datasets which are
publicly available are very different in composition from each other. This makes it almost
impossible for anyone to use the data from multiple experiments and come up with a bigger
and better picture about bee health/activity. There is a need to devise standard practices for
collection of data and its labelling, so that data shared by different researchers can be used
together. This will improve the quality of research in this area and speed up the progress

towards better beehive monitoring systems.

The problems discussed above lead to another major issue faced by researchers working
towards smart beehive monitoring systems. One of the aims of smart beehive monitoring
is to generate assessment about the state of the hive, similar to that of a good beekeeper.
For this, a supervised machine model requires the assessment of hives from experienced
beekeepers. The model then uses the sensor data from hive, and learns to relate this data
to the assessment of the hives provided by the beekeepers. Supervised machine learning
requires a good quality and quantity of labelled data to train a model capable of classification
of current hive state and/or the prediction of future hive state(s). The role of beekeepers in
providing the assessment of hive, also known as ground truth or data label, is very important.
Without this ground truth, even a sensor dataset of high quality and quantity cannot be
used to train a machine model for hive state classification. And for a well trained machine
model, the ground truth must come from multiple beekeepers, variety of hives in different
states of bee health, spread over a large area to add the impact of various environmental
conditions on the hives. Collaboration between researchers and beekeepers is essential for

the use of advanced machine learning tools and algorithms for beehive monitoring.

Beehive monitoring systems have not been investigated properly for the identification
of the bee disease(s). Most of the work in literature is on classification of different states
of hives. When it comes to bee diseases, the current focus of monitoring systems is on
detecting the symptoms of diseases. Once these symptoms are detected by the system,
only then the beekeepers are alerted so they can manually intervene and identify/verify
the disease, and eliminate if it is not too late already. This is a desired feature to have but
definitely not the end goal. There is a need for further research to identify the disease inside
the hive in its very early stages, or preferably predict it in advance with the help of machine
learning. Authors in this detailed survey [96] also emphasize on the integration of efficient,
operational, and deployed Al models. This will enable beekeepers to intervene in a timely

and effective manner and avoid the loss.

Most of the gaps in the research of beehive monitoring are not easy to fill. For example,
any data collection from beehives with disease has to be carried out under strict bio-
protocols [97], for which the involvement of experts/researches of honeybee biology is

required. Placing sick beehives indoor in a controlled environment alters the bee behaviour,
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and the data collected by electronic sensors in such setting is biased. Out in the open,
honeybees visit a vast area around the hive to collect pollen and nectar. And it is very
likely that bees from multiple hives will visit the same resource. Thus, the chances of bee
disease spreading from one hive to another are very high. For collection of data from a sick
hive in the open, it is important to place that hive where chances of bees crossing the path
of other domestic bees are minimum. For this, one has to survey the area to ensure that
other beekeepers have not placed their hives near by. Still, there is a chance of infecting the
native bees present in that area, and some bee diseases can be devastating for native bee
population.

Disease such as ‘American Foulbrood’ [98] has no cure available, and the bio-protocols
require that the infected hive, with all the bees and hive components should be destroyed [99],
with burning as a standard practice. If a monitoring system is used to collect data from such
a hive, that monitoring system should also be burned, a sacrifice most of the researchers
are not willing to make. Most of the experiments with sick hives need multiple repetitions
of experiments, over different seasons, and different environment conditions for reliable
collection of data. Thorough study and data collection of a single bee disease requires
multiple years of carefully designed experimentation and data collection. Moreover, the
working methodologies and objectives of researchers working on biology of bees, those
working on electronics of beehive monitoring, and data scientists are very different. And
then the professional beekeepers operate in a manner which is very different from scientific
community. For a comprehensive study of bee diseases using electronic monitoring systems,
a great level of willingness to collaborate is required among all the stake holders.

Addressing all these limitations and research gaps in a single study is not possible, and
some core problems were identified for investigation in this work. These problems are
related to the design of monitoring systems, as progress towards better monitoring systems
will also create pathways towards solving other problems that have been identified. This

work on the electronic beehive monitoring system aims to answer these three questions.

* Which sensors should be used to design a low-power and long-range beehive moni-
toring system for remote regions?
* Is it possible to reduce the system design cost by using soft sensor prediction to

replace expensive/difficult to use sensors such as weighing scale?
» Can machine learning algorithms assist in the selection of sensors for specific tasks,

and help fine tune the design of beehive monitoring systems?

To answer these questions, we design, develop and thoroughly test a monitoring system,
capable of collecting data from beehives located at remote sites. The sensors for this
system are selected after a careful study of systems proposed in the literature, and those
commercially available. The goal is to use sensors which measure hive parameters of
significant relevance, as well as facilitate the collection of data in a reliable manner. The

system design is scalable to allow collection of data from multiple hives, and supports
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2. BACKGROUND ON BEEHIVE SENSORS AND MONITORING SYSTEMS

deployment in remote areas to collect geographically diverse data. A sensor dataset of
high quality and resolution is collected using deployments of multiple sensor systems.
The design of this system, the data collection methodologies, details of experimental
setups, as well as the collected dataset are shared with the research community to facilitate
reproducibility.

To test the effectiveness of designed system, sensors, and the collected data, machine
learning tools and techniques are utilised in this work. As discussed in previous sections,
one of the most expensive and difficult to measure parameter of a beehive is its weight,
yet the weight variations are a very good indicator of honeybee activity and hive health.
In this work, deep machine learning models are employed to estimate the daily weight
variations of hive using the data collected from sensors deployed inside the hive. The
proposed models are capable of estimating the daily weight change/variations of hive with
good accuracy. The machine models are also used to identify the most important sensors
for weight estimation, as well as the times of day which are crucial for data collection. The
monitoring of different hives states, or those with disease is beyond the scope of this work.
However the promising results of weight estimation indicate that the designed system can
be used to collect information rich data from beehives, and help advance the research of

beehive health monitoring.
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Chapter 3

Design and Development of Low-Power,
Long-Range Data Acquisition System for
Beehives - BeeDAS

Chapter 2 evaluated different sensors used in beehive monitoring and analysed some moni-
toring systems from the literature. It also examined some commercially available beehive
monitoring systems. Based on that evaluation and analysis, this chapter discusses the
design, development and deployment of a multi-sensory, remote data acquisition system for
beehives (BeeDAS). The focus of this system is on low-power consumption and long-range
communication. The proposed system enables collection of data from beehives at remote
locations and harsh environment. Results of field deployments elucidate the effectiveness of
various sensors which measure temperature, humidity, atmospheric pressure, CO, acous-
tics, vibrations and the weight of a hive in hostile environment. This chapter addresses the
design challenges associated with such systems and highlight the critical issues that need
consideration such as sensor placement, power optimization, sleep intervals, noise filtering,
calibration, feature extraction from sensor data and the data storage. These findings will
help improve all kinds of data acquisition systems designed for remote deployment. The
collected dataset and the system design files are also made public in a repository for the

scientific community to build upon this work [100].

This chapter also uses random forest regression to evaluate the feature importance for
the task of estimating the daily hive weight change. This importance is evaluated for hive
sensors, environmental variables such as temperature, humidity, rain, wind speed, and the
information related to seasons, on a dataset comprised of 1,250 days of sensor recordings.
The protocol designed for communication using Narrow Band Internet of Things (NB-IoT)
is also evaluated. The primary objective of this system is to collect data which can be used
to improve the decision making capability of beehive monitoring system. Decision making
capability of any system is highly dependent upon the quality and quantity of training data.

Most of the data acquisition systems designed by researchers are designed to collect data
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through a small set of sensors, and capable of short-term data collection, with deployments

restricted to sites with access to power and short-range communication. Data collected by
such systems lack both temporal and spatial diversity. This hinders the development of a
dataset that can be used to effectively train machine learning models. This chapter not only
investigates an appropriate design for monitoring systems, but also provides a platform to

collect reliable data from beehives.

3.1 Background

Data acquisition systems are a common tool for monitoring a wide range of phenomena
in industry, agriculture, healthcare, entertainment, transportation and sports. Automated
decision making is facilitating many aspects of human life [101, 102, 103], and the data
acquisition systems play a fundamental role in collection of the essential data for the training
of machine learning algorithms. However, deployment of these systems in remote areas
is a big challenge because of power, maintenance and communication constraints [104].
Inaccurate sensor data and unreliable communication from remote sites make precise and
timely decision making very difficult. In this chapter, the design of a multi-sensor data
acquisition system for beehives (BeeDAS) is presented as a platform to consider these
constraints. A total of 8 data acquisition systems were deployed at different locations to
test the reliability, power consumption and communication aspects of the designed system.

BeeDAS is capable of stand-alone operation without human intervention. The power
efficient and robust design of the system is complemented with long-range communication
capabilities using Long Range Wide Area Network (LoRaWAN) and Narrow Band Internet
of Things (NB-IoT), allowing round the year collection of sensor data from remote regions.
Round the clock monitoring capability of such systems is important because some bee
diseases can spread very quickly from hive to hive [105]. The proposed system transmits
the data as it is collected, and can alert beekeeper about major hive events within minutes.

This chapter also uses machine learning to evaluate the performance of BeeDAS. The
daily weight change of a hive provides a very good valuation of beehive strength and bee
activity [32]. This daily weight change is used as a benchmark to evaluate the in-hive
sensors of BeeDAS on the basis of their contribution towards predicting/estimating this
change. The sensor feature importance towards this estimation is directly proportional
to the usefulness of that sensor for beehive monitoring. Random forest [106] is used to
evaluate this importance. Random forest is a supervised learning algorithm which makes
use of ensemble learning, where multiple learning algorithms are used in parallel to obtain
a better prediction. Random forest is an ensemble of decision trees [107], usually provide
high accuracy, allow the assessment of importance, and are resistant to over-fitting. This
makes random forest a good candidate for evaluating sensor feature importance for the task

of estimating the daily weight change.
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This chapter aims to:

* Design, develop and deploy a low power beehive data acquisition system.

* Investigate a unique set of sensors and efficient feature extraction techniques to
generate minimal amount of data to reduce transmission costs.

» Evaluate the sensor feature importance towards beehive weight estimation using
random forest, on the collected weather and sensor data .

* Test the performance of NB-IoT for long range data communication from remote

hive sites.

3.2 Design Requirements

There are several challenges specific to designing of a beehive data acquisition system as
discussed in previous chapter. Improper deployment of electronics in a hive can result in
an altered behaviour of the bee colony, thus resulting in collection of biased data. The
basic structure of the most commonly used Langstroth hive consists of several chambers,
with multiple frames in each chamber as shown in Figure 2.2. The frames inside a hive are
stacked both vertically and horizontally, which combined with the complexity of the beehive,
makes the placement of sensors difficult without input from experienced beekeepers.

The relative humidity inside the hive is usually above 50% [40], which not only impacts
the readings of some sensors but can also cause corrosion in the long-term. Honeybees
have a tendency to cover any alien objects in the hive such as exposed sensors with bee
glue i.e. propolis [108], which impacts the performance of sensors. A completely sealed
system to protect sensors from bees and propolis would fail to collect accurate temperature,
humidity and gas data from the beehive. Any attempt to partially cover the sensors results
in hive pests, such as small cockroaches, finding a safe refuge under this cover and using
it as a breeding ground. From a wireless communication point of view, the honey in the
hive attenuates the radio signals, limiting the placement options for systems with internal
antennas.

Beekeepers move their hives frequently to different sites in search of honey, or to provide
pollination services. A lot of these sites are remote, with no power and communication
available. Since the use of long-range communication technologies such as LLoRa and/or
NB-IoT limit the amount of data that can be transmitted, it is not possible to use sensors
which generate large quantities of data. For example, a video camera is very useful for hive
monitoring, but is power hungry and also generates a large amount of data. Transmitting
such high bandwidth video data from a remote site can often exceed the channel capacity.
The alternative of onboard processing to extract features from video data requires significant
power and computational resources, making video cameras generally a poor fit for remote,

power limited monitoring systems.
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Figure 3.1: Block-level diagram of BeeDAS, with all the sensors, communication boards
and their respective interfaces with the microcontroller board.

3.3 System and Sensors

BeeDAS comprises 6 internal hive sensors (sound, temperature, humidity, pressure, gas,
vibration) and an external weighing scale as shown in block-level system diagram in
Figure 3.1. BeeDAS uses a Sparkfun Redboard Turbo board equipped with a 32-bit/48MHz
ARM Cortex-M0+ Micro Controller Unit (MCU). This MCU comes with a 12-bit Analog to
Digital Converter (ADC) and 32 kB of SRAM, and provides enough computational power
to extract features within hive. An I2C bus is used as a primary communication interface
for most of the digital sensors in the system. BeeDAS is configured to collect data every
10 minutes. A two-layer interconnecting PCB was designed and fabricated for interfacing
the MCU board, sensor boards and the communication boards. The approximate cost for a
single BeeDAS unit is around 200 AUD, which includes NB-IoT board and LoRa module.
The weighing scale costs an extra 500 AUD to manufacture. The PCB schematic and board
files of BeeDAS, along with the sensor dataset are available as a github repository [100].
The online links of relevant datasheets are also available in the README of this repository.

3.3.1 Temperature

Modern temperature sensors are small, accurate, and very power efficient, which makes
their use in monitoring systems much easier. The temperature in brood chamber varies
between different frames. Honeybees are able to regulate the temperature of frames in
the middle of the brood chamber much better compared to the frames towards the outer
edges [109], where the outside temperature variations have a greater impact. Also, the
area inside the hive where bees can maintain the temperature around 35°C is directly

proportional to colony strength (number of bees in the hive). Most commercial monitoring
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systems use a single temperature sensor towards the middle of the hive. Such placement for
bulky systems can be intrusive, and adversely impacts the brood rearing of hive. A good
strong hive can raise brood on all frames, whereas a weak colony only raises brood in the
few middle frames of brood chamber. This means that a temperature sensor in the middle

of brood chamber is unable to provide information about the number of brood frames.

The design used a BME280 by Bosch, which has temperature, relative humidity and
atmospheric pressure sensors of 16-bit resolution in a single package. The temperature
sensor can measure from -40 to 85°C, with a tolerance of £0.5 °C at 25°C. As shown in
Figure 2.2, BeeDAS is deployed at the edge of outer most frame in the brood chamber, to
avoid the use of precious brood space in the middle of the chamber. But at this position,
the temperature readings are also influenced by the temperature outside the hive. Through
experimental deployments, it was observed that the temperature variations at this position
decrease in magnitude as the brood area inside the hive expands towards the outer frames.
Using the magnitude of these temperature variations and the external temperature as a

reference, number of brood frames in the hive can be estimated.

Challenges: Deploying extra sensors to collect the external data adds to the cost, com-
plexity and size of the monitoring system. We record the external temperature, temperature
feel, rain, humidity and wind-speed data reported by the Bureau of Meteorology (BOM)
Australia [110], using an Application Programming Interface (API). This weather data is
reported every 15 minutes, and linear interpolation is used to re-sample it with a 10 minute
interval to align it with sensor data from hives. As this weather data is available only for
each weather station in Australia, it can lack accuracy for locations far away from these
stations. If weather data is required for a large number of BeeDAS deployed at a particular

site, having a dedicated local weather station may improve the overall performance.

3.3.2 Relative Humidity

Relative humidity is the percentage of moisture in the air, against the maximum possible
level of moisture at that temperature [111]. Even though humidity sensors are less accurate
compared to temperature sensors, they are still good enough for monitoring beehives as
honeybees can tolerate humidity variations much better than temperature variations. As
discussed in the previous section, BME280 is used as a humidity sensor which can measure
relative humidity from O to 100%, with a 3% accuracy tolerance.

Configuration: The humidity sensor of BME280 has a built-in IIR filter which can be
used to reduce noise when data is sampled at a faster rate such as every second. Since
BeeDAS has been designed to be power efficient, the forced mode is used where the BME280
sleeps without collecting any data unless forced to do so. With a 10 minute interval for

data collection, we do not use the built-in filter as it results in loss of information.
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Figure 3.2: (a) The atmospheric pressure data recorded from a hive located at The Univer-
sity of Western Australia (UWA), Crawley campus from 20" to 26" of May, 2021, where
each tick on the x-axis of graph represents midnight. (b) Recorded rain in Crawley for the
same duration shows that the rainy days coincide with low atmospheric pressure.

Rain (mm/10 min)

3.3.3 Atmospheric Pressure

The pressure sensor in BME280 can measure atmospheric pressure between 300 mbar
(milli-bar) and 1100 mbar, with RMS noise of 2 mbar. The temperature offset coefficient for
this sensor is =15 mbar/°C. Our initial aim was to use the pressure sensor to determine the
altitude of hive. To precisely determine the altitude, a reference pressure reading is required
at the sea level, which is not always available. Due to the lack of a pressure reference, we
did not include the impact of altitude in this analysis.

Observations: Low atmospheric pressure readings from hive sensors are often accom-
panied by heavy rain, as seen in Figure 3.2. Bees stop foraging activity during rain, which
means that pressure has an indirect relationship with the bee activity. However, light rain is

not always marked by low atmospheric pressure.

3.3.4 Acoustics

BeeDAS collects audio data using an analog MEMS microphone ADMP401, manufactured
by Analog Devices. This microphone has a flat frequency response from 100 Hz to 15 kHz,
and a signal-to-noise ratio (SNR) of 62 dBA. The microphone board comes with an amplifier
which provides a gain of 66 to the audio signal. Despite this gain, the audio signal does not
utilize all of the ADC bits during normal bee activity. An amplifier with a bigger gain can
be used to utilise the ADC to its maximum, however that will create problems when the

beehive goes into an agitated state. The amplitude of bee buzz increases multiple folds in
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Figure 3.3: An example of noisy bee-buzz, sampled at 10 kHz using the built-in voltage
reference of microcontroller for the ADC.

such a state and the high gain of amplifier can result in clipping of the audio signal. It is
important to select an appropriate gain for audio signal to ensure the signal does not change
its shape during infrequent events.

The 12-bit ADC of the MCU was used to sample the audio data. A key to high accuracy
ADC sampling is a good, stable reference voltage. The built-in voltage reference for the

ADC was observed to induce excessive low-frequency noise as shown in Figure 3.3. As a
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Figure 3.4: Example of a clean bee-buzz, sampled at 4 kHz with a 5 kHz LPF, using
REF3433 as voltage reference for the ADC. The use of LPF and stable voltage reference
has a significant impact on the audio quality.
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result, an alternative voltage reference (REF3433) by Texas Instruments was used which

produced a stable 3.3-V, low-drift voltage reference. A clean bee buzz is vital for reliable
feature extraction [112], and a significant improvement in the audio quality was observed
by switching to the external voltage reference. Using a second order, analogue RC Low
Pass Filter (LPF), with a 5 kHz cut-off further improved the audio quality by filtering the
noise, as seen in Figure 3.4.

Operation: The ADC of the MCU can sample up to 48 ksps (kilo samples per second),
making it possible to record frequencies up to 24 kHz (via Nyquist criterion). However
the limited memory available on the MCU restricts the number of samples that can be
collected in a single burst of recording. Our studies found that it was important to record
the audio signal for a minimum of 500 msec of bee buzz to extract key features. Bee buzz
audio was investigated up to frequencies of 2 kHz (sample rate at 4 ksps), recording 2048
samples of audio every 10 minutes.

Processing: The bandwidth required to transmit audio data is much smaller than video
data, but is still significant. The MCU is used to extract useful features from audio data, and
transmit only the extracted features using a 2048 point Fast Fourier Transform (FFT). These
features include the peak amplitude of buzz, highest frequency component for the recorded
buzz, and the Power Spectral Density (PSD) of buzz with a 100 Hz resolution. Each audio
recording requires 4096 bytes of data (2 bytes per sample), but the feature extraction process
reduces this data volume down to 24 bytes, representing the audio features collected within
a minimum of 500 msec sample duration.

Placement: While placement of multiple microphones on frames in a hive would
improve the data collection, it would create problems for the beekeepers during hive
inspection. The decision to use a single microphone was driven by our need to facilitate
beekeepers, while using ultrasensitive MEMS microphones with 12-bit ADC to help detect

bee buzz even from weak hives.

3.3.5 Gas Sensor(s)

CCS811 gas sensor from Sciosense is used to evaluate the gas emissions in the hive. This
10-bit, low-power digital metal oxide (MOX) sensor is capable of detecting low levels
of equivalent Carbon dioxide (eCO-) and equivalent Total Volatile Organic Compound
(eTVOC) in ranges typically found indoors. The term equivalent is used for describing
different greenhouse gases in a common unit, so these values do not correspond to pure
content but to everything similar. The eCO; output range for the CCS811 is from 400 up
to 29206 parts per million (ppm) and the eTVOC output range is from O up to 32768 parts
per billion (ppb). Because of their wide usage and large scale manufacturing, gas sensors
have seen a significant reduction in size and drop in cost. However, most of these sensors

are designed for indoor deployment.
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Figure 3.5: Sample of eCO, data collected form two hives with similar bee colony strengths,
located at Jurien Bay, WA during late June 2021. Data shows contrasting patterns of eCOy
fluctuations between the two hives.

Operation: The characteristics of MOX based sensors vary from sensor to sensor,
and each sensor has a different baseline. CCS811 firmware is programmed to adjust its
baseline at the system startup. It assumes that the sensor is in clean air at startup (not
always the case) and uses the initial readings of first 20 min to stabilize and adjust the
baseline. Within remote sensing systems that power down sensors to conserve power, this
startup stabilization delay and baseline shift produce unacceptable variation in the collected
data. The firmware is also programmed to re-calibrate itself on detecting high CO5 levels,
based on the assumption that high reading must be a result of sensor drift. To counter this,
baseline records were obtained for each sensor in the lab environment, and the CCS811 was

programmatically forced back to the baseline reference at regular intervals once deployed.

The CCS811 can be configured to operate in different modes to optimize the power
usage. It can sample data every second, every 10 seconds or every 60 seconds. The greater
the sampling interval, the lower the power consumption but this also lowers the sensor
accuracy. This sensor achieves best accuracy when sampling every second, and hence
some accuracy is compromised in a monitoring system designed to sample data much
less frequently. Even though this sensor is able to detect eCO- and eTVOC, both of these

readings were found to be highly correlated, carrying similar information.

Challenges: The cost of gas sensors is still high enough to limit their wide scale use in
commercial monitoring systems. These sensors often have a much higher current rating
compared to other sensors, which makes it difficult to use them in remote systems (see
Table 3.5). These sensors also have a high drift and require frequent calibrations to adjust
the baseline. It is difficult to regularly pull monitoring systems out of the hive, put them
in a clean, stable environment for re-calibration, and then redeploy in hives. Frequent
opening of a hive disturbs the bees and the environment inside the hive i.e., the temperature,
humidity and composition of gases is lost every time a hive is opened. This makes the

long-term deployment of these gas sensors difficult.

Reliability: Two major factors that affect the functionality of MOX based gas sensors

are humidity and temperature [113], which vary from hive to hive. Figure 3.5 shows eCO,
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readings from 2 different hives, located at the same site. Even though the strength of

bee colonies in these hives was observed to be very similar, the eCO, levels exhibit very
different gradients, and don’t follow a similar pattern. Despite considering this a good
sensor based on the manufacturer’s specifications, our study indicates that this particular
gas sensor (and possibly this family of sensors based on MOX) may not be a reliable choice

for hive monitoring.

3.3.6 Accelerometer

Accelerometer is included in BeeDAS to pick up the vibrations generated by the bee waggle
dance. The MMAS8452Q triple axis 12-bit accelerometer from NXP Semiconductors
was used within deployed hives. This capacitive accelerometer is capable of detecting
gravitational force in the range of £2g, +4g or £8g, depending upon the mode, and
supports output data rates from 1.56 Hz to 800 Hz. The +-2g scale was used in BeeDAS, as
hives do not experience high g-forces. Datasets of 512 samples at 500 samples per second
in each recording were obtained, which provided nominally 1 second of vibration data on
all three axes every 10 minutes. Using the onboard MCU, the highest frequency component
for each axis was extracted using Fast Fourier Transform (FFT), allowing vibrations in the
range of 13 Hz and 250 Hz to be detected, with a resolution of approximately 1 Hz.
Placement Challenges: Honeybees have evolved to communicate using a waggle dance
on hives made up entirely of wax. During this dance, the bees use a 15 Hz abdomen waggle
and the 250 Hz thorax vibration [55, 58]. The composition of dance floor plays a significant
role in determining the effectiveness of communication [114], and in commercial beehives
made up of custom material, the wax is available only in the middle part of wooden/plastic
frames. These frames are not ideal for the propagation of bee vibrations. In addition, the
mounting screws for BeeDAS added further attenuation to the propagation of vibrations
from the bees (through the wax and frame) to the accelerometer. If frames are allowed
to remain at the same place for extended periods, the frames become glued together by
the propolis produced by the bees, which improves the propagation of these vibrations.
However, in commercial hives, the frames are regularly pulled out for honey extraction and
bee inspection. Issues with the propagation of acoustic waves result in just a fraction of all
vibrations inside the hive being picked up by the accelerometer. Further, accelerometers
were configured to sample data at regular intervals to conserve power. The combination of
periodic sampling and signal attenuation (given the sensor’s resolution) result in majority

of waggle dance events not being recorded.

3.3.7 Weight

Beehive weight scales are required to be rigid enough to support hives up to 120 kg in

weight, sensitive enough to pick up changes of a few grams, and reliable enough to function
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outdoor in all weather conditions. For each designed weighing scale of BeeDAS, a total
of 4 load-cells were used in a Wheatstone bridge configuration, with a maximum 50 kg
load capacity per sensor. As shown in Figure 3.6, these load-cells are placed in indents
designed as per size specifications to lock sensor position on the base aluminium frame.
These scales were specifically designed for hives, where an aluminium lid on top of each
scale ensures that the weight of the hive is transferred only through the 4 load-cells, and
also protects the sensors from rain and direct exposure to sunlight. The size of the scale
allows for easy placement of Langstroth hives (see Figure 2.2). The scale can measure

weights upto 200 kgs, which more than satisfies the maximum weight requirements.

HX711 from Avia Semiconductor is
used as a load-cell amplifier and 24-bit
ADC, which provides a resolution of 50
mg, with an operating range of -40 to 85°C.
An average worker honeybee weighs about
100 mg [115], and theoretically this resolu-
tion should allow the measurement of the

net number of bees entering or leaving the

hive. Unfortunately, it is not practically pos-

sible to continuously monitor the weight of Figure 3.6: The 3-D model of the weighing
a hive in remote deployment, and weight scale designed for the beehives, with dimen-

is recorded every 10 minutes. During this Sions and load sensor placements.

interval, the net hive weight gain/loss is a result of foragers leaving the hive, foragers
entering the hive, the amount of pollen/nectar brought in by the foragers, the evaporation
of moisture from nectar, and the consumption of food by bees/brood inside the hive. On
top of that, the variations in temperature and humidity, the accuracy of ADC, the exposure
of hive to sun/shade also impact the weight readings. This makes it impossible to translate
the weight change into exact number of bees participating in the foraging activity. Other
methods such as camera monitoring at the hive entrance are much more suited to measuring
the number of forager bees, however the power consumption made their use in this remote

environment unfeasible.

Operation: The HX711 load-cell amplifier is powered down when not in use, and the
readings of initial few seconds of ADC are discarded after it is powered up to allow for the
warm-up time. To minimize the conversion error, several readings from ADC are recorded
in multiple small bursts, from which the average of each burst is calculated, and the median

value of these averages (ADC_avg) is used to calculate the weight using:

Weight = (Sensitivity x ADC_avg) — Of fset (3.1)

where Sensitivity is the coeflicient to convert ADC readings to weight in grams, and
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Figure 3.7: (a) Daily weight variations from a hive during two day period in March 2021
(early autumn) and two day period in June 2021 , located at The University
of Western Australia (UWA), Crawley campus. (b) The difference in the rates of weight
change for the same hive during two different seasons is an indicator of different levels
of foraging activity. Red ellipses highlight sharp changes in weight due to many foragers
simultaneously leaving the hive in the morning.

the Offset is the error in grams with no weight on the scale. The use of resistive load
sensors with different manufacturing bias means that every weighing scale needs individual
calibration. The Offset values not only vary a great deal between scales, but also drift over
time for each scale, requiring re-calibration nominally every 6 months. The Sensitivity
values for the different scales remain stable over time. However these values are not close
enough to allow a single value to be used across all scales, requiring a separate Sensitivity

value for each scale.

Observations: As the foragers of a hive start to return with pollen and nectar, the weight
of the hive starts to increase. This increase is directly proportional to floral resources
available around the hive. Once the sun sets, or the environmental conditions do not favour
active foraging, the hive weight starts to decrease. This decrease is a net result of both
nectar losing weight because of evaporation, and from the bees consuming the stored food

to keep themselves warm.

Figure 3.7 (a) shows samples of weight data from a single hive during two different
seasons. On 14" and 15" of March 2021 (early autumn), the hive gains close to 0.50 kg of
weight over a two day period. The sharp dips in the weight in early hours of morning are

the result of many foragers simultaneously leaving the hive. These are also reflected by
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negative rate of weight change of -0.24 kg/hr and -0.36 kg/hr, marked with red in Figure 3.7
(b). There are significant portions of positive rate of change during the day indicating
productive foraging activity. However weight data from the 5" and 6 of June, 2021 (early
winter) tells a different story. The hive loses approximately 0.25 kg of weight over two
days, as little nectar and pollen is available for foraging. The foragers leaving the hive early
in the morning are significantly less in number, which is also evident with the absence of
negative rate of weight change for these days. The positive rates in the two day period in
winter are also of lesser magnitude and duration when compared to the two day period in
autumn 2021. Thus the rate of weight change of a hive acts like a heartbeat of the hive,
providing vital information about hive health and bee activity.

Challenges: In Figure 3.7 (a), one can observe ripples in the hive weight on the 6™ of
June 2021, which are a result of rain on that day. Most of the beehives have horizontal
top lids which are not perfectly flat, and a concave curved lid can accumulate rain water
impacting the weight. Any wire connections or circuit boards of the scale exposed to
rain can give incorrect readings. This makes it hard to get a precise weight reading of
hive during/after rain. Other environmental factors such as temperature, exposure to
sunlight/shade also impact the operation of scales. Since these scales are meant to be
deployed in large numbers, they also should be cost effective and well calibrated. These
issues make the design of these weighing scales very challenging, yet weight is perhaps the

most important parameter to know when monitoring bees.
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3.4 Sensor Evaluation Using Random Forests

Proper evaluation of sensors in a design is a fundamental step for system optimization.
Researchers have used machine learning not only for evaluation and calibration of sen-
sors [116], but also for aiding the sensor design [117]. Ballard et al. in their work [117]
discuss how the design of hyperspectral image sensors, diagnostic sensor for Lyme disease,
and other distributed sensing platforms can be improved by leveraging machine learning
techniques and inverse design. They suggest that hardware for data acquisition can be
redesigned for optimal sensing of data with respect to a parameter defined by user. This is
especially useful for systems designed for specific tasks, which can be used as a benchmark
for evaluation. In our case, the daily weight change of a hive is used as a benchmark to
evaluate the in-hive sensors of BeeDAS on the basis of their contribution towards predict-
ing/estimating this change. At this stage, the aim is not to achieve best possible weight
estimates, but to evaluate the sensors and features in the design against each other. Later
chapters will explore advance deep learning techniques not only to validate these findings

but also generate best possible weight estimates.

One of the machine learning algorithms explored for the evaluation of sensors early
in this study was Convolutional Neural Network (CNN). CNNs are good at identifying
different patterns in the data, and can be used for both regression and classification tasks.
However the fully connected layers and convolutional filters of CNN make it difficult to
identify the contribution of individual inputs for a given task. After some experimentation,
it was decided to not pursue CNNss for sensor evaluation. Also, classification of daily change
of hive weight into low, medium or high does not provide beekeepers with a resolution they
are interested in. Beekeepers are more interested in net change of the hive weight, thus
this total change was later used as a benchmark to evaluate the contribution of different
sensors. Therefore, the preliminary results of using CNN for hive weight classification are

not included in this thesis.

As discussed above, the net change in the hive weight during a day is treated as a
regression problem for sensor evaluation. Multiple machine learning techniques can be
employed for regression, but random forest [106] are most widely used for the assessment
of importance of the inputs for the regression task. They are also resistant to over-fitting
and the ensemble of decision trees usually provides good accuracy. This makes random
forest a good candidate for evaluating sensor feature importance in BeeDAS for the task of

estimating the daily weight change.

As discussed in the previous sections, the changes in the weight of a beehive are one of
the most obvious indicators of bee activity. If a sensor system is accurately measuring the
honeybee activity throughout the day, it should also be able to estimate the daily weight
change of the hive. The sensor features collected through BeeDAS are used to estimate

the daily hive weight change using random forest [106]. This hive weight change varies
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between -1.0 kg to 2.5 kg per day, based on environmental conditions, season and strength
of the bee colony. The effective regression learning of random forest allows the estimation
of weight change for this entire range. Any sensor or feature that contributes well towards
the weight estimation is a useful one. However one cannot discard a sensor from beehive
monitoring system just on the basis of poor contribution towards weight estimation, as
each sensor may contribute differently towards diagnosis of bee diseases. The scope of this
study is however limited to evaluating sensor feature importance towards daily hive weight
change, which in itself is a very challenging task. Given the difficult nature of measuring
the hive weight using expensive scales, reasonable estimation of weight using affordable

sensors using machine learning can be very valuable for the beekeepers.

The dataset used for this task has a total of 1,250 days of sensor data, collected from 3
different sites located at; Capel, UWA Crawley campus and Lesueur National Park. This
data was collected using a total of 8 units of BeeDAS, deployed in hives at these sites over
different time periods. Capel is approximately 170 km south of UWA Crawley campus,
whereas Lesueur is 200 km north of UWA campus. Hives used in Capel were made of
polystyrene, whereas hives at the other two sites were constructed using wood. The system
performed adequately in both types of hives. Initially two units of BeeDAS were deployed
to collect data from November 2020, whereas all eight units were deployed from March
2021. Only the data collected till the end of September 2021 is used in this analysis of
feature importance. The deployments of BeeDAS between this period (Nov 2020 to Sept
2021) allowed collection of data during a variety of weather conditions, with reasonable
spatial diversity. However, the deployment of BeeDAS was not continuous because of

hardware and software problems in early stages of field deployment. Units of BeeDAS were

Table 3.1: Details of different sensors, extracted features and the number of features
extracted per sensor/environment variable. Average of Mean Absolute Errors (MAE)
computed for all 5-Folds for estimating the daily hive weight change using random forest is
reported in the last column. The lower the error, the greater the sensor importance towards
estimating the change in the hive weight.

Sensor/Parameter Feature details No. of features | MAE (kg)
All - 34 0.200

| Audio | Peak amplitude, critical freq components | 17 | 0220 |
Temperature Temperature, temperature gradient 2 0.246
Pressure mbar 1 0.280
Humidity %o 1 0.302
COq Parts per million 1 0.311
Accelerometer Dominant freq on X,y and z axis 3 0.339

| Humidity (weather) | % | I 0214 |
Temperature (weather) Temperature, temperature gradient 2 0.216
Temp feel (weather) °C 1 0.220
Wind speed (weather) km/h 1 0.234
Rain (weather) Total rain in mm 1 0.305

| Season | Week number of the year | 2 0273 |
Hive size Number of frames in the hive 1 0.382
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Figure 3.8: The scatter plot of actual weight change vs the estimated weight change per
day for 1,250 days in the dataset, using all of the sensor features and the weather data.

repeatedly pulled out to address these issues. The sensor data where heavy rains impacted

the weight readings was also discarded from the dataset.

BeeDAS is configured to collect data at 10 minute intervals, generating a total of 144
data points per day for each sensor/feature. For this study, this high resolution data is
reduced to 8 data points per day, by computing the mean over three hour non-overlapping
windows. This reduction enables the use of random forest for regression. The implemented
random forest uses a total of 100 estimators, and depth of trees is set to the total number of
features involved in each test. Features such as week of the year (season), daily weather
information such as temperature, temperature feel, humidity, wind speed and rain are also
part of the dataset. The weight change for each day is computed by taking the difference of
hive weight between two consecutive mid-nights (12:00 AM to 12:00 AM).

To form a baseline for comparison, initially all of the sensors/features in the dataset
are used to train and test the random forest. We estimate the daily weight change using
5-fold cross validation with a random shuffle of the dataset. This provides a 80-20 split for
training and testing, and the average Mean Absolute Error (MAE) on test sets across all 5
folds is reported. Then, only the data/features from individual sensors are used to train and
estimate the hive weight change. The results are reported in Table 3.1. From internal hive
sensors, audio data has the highest contribution towards estimating the weight change as it
generates the lowest MAE of 0.22 kg among all other internal sensors. From environmental
parameters, humidity and temperature outside the hive play a key role towards determining

the daily weight change.

Some of the qualitative results for the weight change estimations are provided as scatter
plots. Figure 3.8 shows the actual weight change vs the estimated weight change using all of

the sensor features, along with the seasonal and weather information. Results from testing
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for each day using just the features from accelerometer. The narrow distribution of estimated
weight change shows that the vibration features extracted using the accelerometer are not
of adequate quality, as discussed in the placement challenges section for the accelerometer.
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Figure 3.10: The scatter plot of actual weight change vs the estimated weight change
using just the seasonal information. Each major season forms a horizontal cluster, which
represents the most likely change in the daily weight of the hive for that season.

all 5 folds are pooled together to present a complete picture. As reported in Table 3.1, the
best MAE of 0.2 kg is achieved using all of the features. The estimations using all the
features have a fit for purpose accuracy when the change in hive weight is between -0.5 and
0.5 kg, which accounts for the majority of the days in the dataset. The weight estimations
are inaccurate when the change in weight is significant, mostly due to an unbalanced dataset.
Coming chapters will explore other machine learning models which are more robust on

unbalanced datasets.
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Figure 3.9 shows the weight estimations using just the accelerometer data. The ac-

celerometer data consists of most dominant vibration frequencies extracted from X, Y and Z
axes, from 1 second duration recordings captured every 10 minutes. These estimations are
least accurate among all other estimations because of challenges associated with capturing
vibrations generated by bees in a hive. These challenges are discussed in Accelerometer
section. Figure 3.10 shows very interesting clustering, where random forest exploits the
seasonal information to estimate the daily weight change. The seasonal information in the
dataset is available as week number of the year (1 - 52), which provides seasonal details
with very fine resolution. The wide standard deviation of estimations in this case is because
of the huge impact seasons have on nectar/honey collection. The honey collected (weight
gain) during the weeks of spring is significantly greater than any other season, and is

represented by the top most cluster with approximately 1.2 kg of weight gain per day.

3.5 Data Communication from Remote Sites

Communication is one of the most crucial aspects of remote beehive monitoring systems.
Most commonly used long-range communication modes are cellular and satellite commu-
nication. Some systems also employ short range communications such as WiFi, Bluetooth
and ZigBee. The use of cellular communication such as 4G, relies on cellular infrastructure
availability within 15 km radius [118]. Countries with vast landscape and relatively small
population, such as Australia, have large areas with no or poor cellular coverage. Valuable
foraging resources for honeybees in remote forests often have little to no cellular coverage.
Some of the farmlands, where pollination can improve the production also face the same
network coverage problem. The alternative is satellite communication, which is expensive
and much more power hungry. However, with the increase in lower orbit satellite deploy-
ment for internet coverage, such as Starlink [119], both the cost and power consumption for

satellite communication are decreasing rapidly.
BeeDAS has been designed to communicate using:
1- Long-Range Wide Area Network (LoRaWAN)
2- Narrow-Band Internet of Things (NB-IoT)

LoRaWAN is the most cost effective solution available for beehive communication.
However, NB-IoT with its 35+ km coverage offers a range advantage over LoORaWAN,
which has a typical coverage radius of 10+ km [120]. NB-IoT is relatively new and has not
been tested by other researchers in beehive monitoring systems. This section will discuss
both LoRaWAN and NB-IoT communication aspect of BeeDAS and their feasibility for

remote deployment.
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3.5.1 LoRaWAN

LoRaWAN is a communication protocol built upon physical layer of LoRa [121], designed
to connect battery operated ‘things’ to the internet. It is low-power, and long-range with 10+
kms of coverage in perfect conditions [122]. Each LoRaWAN device needs a LoRa gateway
to connect to, and uses license free radio frequency bands. The coverage area is significantly
larger when compared to WiFi or Bluetooth. In LoRaWAN, the only operational costs are
a) the internet connection for the LoRa gateway and b) power. Most of LoRa devices can
operate for months with a small battery, and use of a solar panel with chargeable batteries
makes them a very good candidate for beehive monitoring systems. The LoRa chips have a
small footprint, and can work well with RF Ceramic chip antennas on PCBs. However, to
maximize the communication range, an external antenna is preferable.

Challenges: The major problem with the use of LoRaWAN in data acquisition systems
is the limited availability of LoRa gateways. LoRaWAN based devices and gateways are
increasing quite rapidly, but are mostly concentrated in urban areas. For systems used by
hobbyists, or deployed close to a LoRa gateway, LoORaWAN is the perfect solution with no
operational communication costs. Also, this protocol is designed to carry small payloads
of sensor data. The Things Network (TTN) is used in our application, and all the systems
and data loggers connect via TTN to communicate with each other. Fair usage policy of
TTN allows upto 30 seconds of uplink air time per day per node/sensor [123] to maximize
the number of devices which can use this license free band. For hives deployed in regions
with no LoRa gateways, a dedicated LoRa gateway can be setup. Unlike LoRa devices,
LoRa gateways consume more power as they are continuously scanning for incoming LoRa
messages. Along with a dedicated power supply, they also need an internet connection
which can be hard to arrange in remote regions.

The system has been designed to work within the above mentioned constraints using
LoRa transceiver from HopeRF [124]. System transmit 91 bytes of sensor data for each
iteration, with a spread factor of 7, using Australian 915 MHz band at 500 kHz bandwidth.
This calculates to 44.9 msec of air time for each transmission [125]. With a total of 144
transmissions per day, each system uses 6.5 sec of uplink air time per day, which is well

within the 30 sec limit.

3.5.2 NB-IoT

NB-IoT is a Low Power Wide Area Network (LPWAN) standard, designed for cellular
devices and services [127]. Due to the narrow-band allocation, NB-IoT does not support
high data rates like 4G, but has an extended coverage. In good conditions, a 4G base-station
can cover an area of upto 15 kms radius, whereas NB-IoT has a coverage radius of upto
35 kms. Figure 3.11 shows the Telstra coverage map of Australia for 4G and NB-IoT, both

using the same cellular infrastructure.
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Table 3.2: NB-IoT data packets transmitted from Capel, along with the percentage of
packets that needed re-transmission because of timeouts. The nearest cellular tower was
15.10 km away from the hive site.

System ID || Packets transmitted | Packets with connection timeout | Packets with Ack. timeout
14 14,400 5.67 % 0.61 %

15 15,120 4.31 % 0.81 %

| Total | 29,520 | 4.98 % | 0.71 %

An NB-IoT protocol has been designed for communication between BeeDAS units in
the field, and a Raspberry Pi host at The University of Western Australia (UWA) Crawley
campus, using Message Queuing Telemetry Transport (MQTT) [89]. The small sized pack-
ets of BeeDAS sensor data complement well with publish/subscribe messaging supported
by MQTT. The NB-IoT first attempts to establish a connection with Telstra network, and
then attempts to connect with the host system using MQTT, with timeouts allocated for both.
Once successful, the date/time request and the data packets are published by the BeeDAS,
and the host in return publishes the appropriate response and acknowledgements. Data com-
munication is only considered complete when BeeDAS receives a final acknowledgement
published by the host. In case such an acknowledgement is not received, BeeDAS saves the
data on the SD card for re-transmission attempt(s) in next cycle(s). This guarantees that
sensor data is never lost during transmission, unless the SD card fails simultaneously. Every
time BeeDAS is unable to connect to the network, or fails to receive acknowledgement
from the host, error flags are saved with the respective sensor data. Eventually BeeDAS
transmits all the pending data, and the host can identify the reasons for delayed transmission

using the error flags, if applicable.

In initial test deployments during 2019 and 2020, BeeDAS successfully communicated
sensor data using NB-IoT from areas without 4G coverage such as Tincurrin WA and
Mundaring State Forest WA [128]. For beehive sensor data collection using NB-IoT, a total

Figure 3.11: Telstra coverage for 4G (left) and NB-IoT (right) in Australia [126], with
approximately 700 km? and 3800 km? coverage per base-station respectively.
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of 2 BeeDAS units were deployed from late 2020 onwards in hives located at Clover fields
at Capel WA. Later, up to 8 BeeDAS units were deployed in UWA Crawley campus and
Lesueur National Park WA with NB-IoT connectivity. Table 3.2 and Table 3.3 show systems
deployed at Capel and UWA respectively, and the details of NB-IoT packet transmission
from these hive sites. These details include the total NB-IoT data packets transmitted, and
the percentage of packets re-transmitted from hive site because of network connection
timeout or host acknowledgment timeout. The results from hives located at Capel are
interesting because of significantly lower percentage of timeouts, despite being a good
distance away from nearest base-station. These hives were used for pollination and placed
on a movable platform to allow for easy transportation between fields, which gave these
hives (and internal NB-IoT antennas) a 120 cm elevation from ground. This elevation
advantage resulted in better connectivity to base-station and timely communication. For
the other two locations, the hives were placed just 10 cm above the ground. The majority
of re-transmissions occur because NB-IoT fails to connect to Telstra network within the
allocated time. The duration of allocated timeout can be increased to reduce the percentage
of re-transmitted packets, but that will come at the cost of increased duty cycle, leading to

higher power consumption of the system.

During another deployment at a Tedera field near Yathroo WA, communication was
significantly impacted as the vegetation in the field was quite dense, and more than 60
cm in height. Since the sensor frame (and the antenna) located in the brood chamber was
surrounded by this dense vegetation, NB-IoT' was unable to connect to the network. Based
on this experience, the design of 4 BeeDAS units was modified and external antennas were
mounted with 40 cm of elevation from ground. With external antenna for systems with ID
16, 17, 18 and 19, NB-IoT demonstrated significantly better connectivity. Table 3.4 shows
transmission results from hive site at Lesueur after the modifications, where systems with
external antennas have a significantly smaller percentage of connection timeouts compared
to other systems. However external antennas are vulnerable, and the antenna of system 17

was damaged during hive transportation. The sensor data for this system was manually

Table 3.3: NB-IoT data packets transmitted from UWA, along with the percentage of
packets that needed re-transmission because of timeouts. The nearest cellular tower was
0.10 km away from the hive site.

System ID || Packets transmitted | Packets with connection timeout | Packets with Ack. timeout
11 16,848 11.47 % 1.82 %
13 13,680 12.91 % 2.16 %
14 9,504 14.28 % 1.94 %
15 6,336 11.95 % 2.70 %
16 17,712 15.26 % 1.84 %
17 12,384 13.76 % 2.08 %
18 11,088 15.83 % 1.78 %
19 10,512 15.02 % 1.93 %
Total | 98,064 | 13.82 % | 1.98 % |
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Table 3.4: NB-IoT data packets transmitted from Lesueur, along with the percentage of
packets that needed re-transmission because of timeouts. The nearest cellular tower was
21.40 km away from the hive site.

System ID || Packets transmitted | Packets with connection timeout | Packets with Ack. timeout
11 5,616 30.59 % 2.37 %
13 5,904 30.25 % 3.32 %
14 5,328 37.58 % 4.07 %
16 6,192 16.12 % 3.28 %
18 6,336 13.79 % 2.32 %
19 6,480 14.98 % 3.04 %
] Total H 35,856 \ 23.28 % \ 3.06 % \

retrieved from SD card at the end of deployment, and is not included in the communication

table for Lesueur.

Challenges: MKR NB 1500 from Arduino was used in BeeDAS, and even though this

NB-IoT board has been in production for a few years, it still suffers from stability issues.

Initial sensor deployments at UWA used old firmware of the NB-IoT modem. This caused
frequent timeouts in communication even though the hive site was just 100 meters away
from a cellular tower (see Table 3.3), before we updated the modem firmware to the latest
version. The primary issue with the modem on this board and similar communication
platforms is the need to maintain and update firmware. Communications hardware is
moving faster than software teams can patch issues and the short product life cycle of many
communications platforms can compromise long-term remote sensor systems. In addition,
one can see from Table 3.5 that the NB-IoT board is the most power hungry component of

BeeDAS, thus requires careful management of sleep cycle during remote deployment.

3.5.3 LoRa - NB-IoT Hybrid

All the BeeDAS units deployed at a hive site can communicate with each other using raw
LoRa. This gives us the flexibility of creating a star topology LoRa network of sensors,
where one of the sensor system can act as a central connection point or hub. This hub can
use the onboard NB-IoT for the long distance communication on behalf of all other systems
at a particular site. This can save costs by reducing the number of NB-IoT devices, as well
as conserve power for the systems using LoRa. Only the hub will need a dedicated NB-IoT
device. Since this hub will listen/wait for other devices continuously, and communicate
much more frequently, the power consumption for this system will be significantly higher.
However pooling of sensor data can be used to optimize the data transmission. This hybrid
configuration has not been tested because of time constraints of this PhD project, but we

plan to explore this in the future.
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3.6 Time Stamping and Sleep Intervals

Time series collection of data requires accurate timestamps associated with each set of
data. Before transmitting sensor data, each BeeDAS unit communicates with the Raspberry
Pi host at the UWA Crawley campus, and requests date and time information. The host
responds with the current date and time, along with the time interval to be used for next
data collection. BeeDAS saves these timestamps along with the raw sensor data on the
SD card, and transmits the extracted features. BeeDAS then calculates the time it should
sleep, based on the provided time interval by the host, and adjusting for the time it has
spent in collecting and transmitting the sensor data. These sleep intervals are accurate to
one hundredth of a second, and the time drift in data collection is negligible.

In earlier deployments, the sleep interval was altered in real-time based on the battery
level of each BeeDAS unit, to avoid completely drained battery. This resulted in a dataset
with variable intervals between collected samples, which can be problematic when used
for training a machine learning model. To maintain consistency of data collection interval,
BeeDAS units are now configured to use an adaptive transmission protocol and temporarily
disable communications when the battery level falls below 10%, and continue the data
collection at default interval of 10 minutes. This results in a reduced duty cycle. However,
the host can override these settings and control the sleep interval of each BeeDAS unit
individually. This interval can be decreased down to one minute in case of specific events
(such as swarming), where the state of hive changes rapidly. The sleep intervals can also
be increased to conserve power during nights, when bees are mostly inactive. However for
the collection of data, a fixed interval of 10 minutes is used throughout these deployments,

and adaptive transmission protocol is used to conserve power when needed.

3.7 Power Consumption

For remote deployment, power efficient design is crucial. To conserve power, sensors
are either put into sleep mode when possible, or to a low-power mode by adjusting their
sampling period. The minimum, maximum and typical current ratings of the sensors and
components used in BeeDAS are shown in Table 3.5. The analog microphone cannot be
switched off, but its data is only sampled when needed. The gas sensor can take up to 20
minutes to stabilize after being powered on, so switching it off is not feasible. However,
the gas sensor can be configured to collect data every 60 seconds to conserve power, but
that greatly impacts the accuracy. To provide a balance between power consumption and
accuracy, the gas sensor has been configured to collect data every 10 seconds. In Figure 3.12,
the current consumption of BeeDAS can be observed while collecting and storing the sensor
data, extracting the features, and transmission using LoORaWAN. With 7 sec of awake time
for every 600 sec cycle, BeeDAS has a duty cycle of around 1.2% using LoRaWAN. With
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Figure 3.12 Current consumption of BeeDAS for an entire cycle of data collection, storage, feature
extraction and transmission.
A- MCU in sleep mode with current consumption at 7 mA.
B- MCU awake and collecting temperature, humidity, pressure and CO- data with current
consumption around 25 mA.
C- Audio sampling, storing of audio data on SD card and feature extraction using FFT. The
storing and feature extraction process increases the current consumption to 60 mA.
D- Accelerometer data acquisition, storing and frequency feature extraction for X, Y and Z axis.
E- Weight data being sampled multiple times for filtering.
F- Data transmission using LoORaWAN with peak current consumption at 150 mA.

NB-IoT transmission, this duty cycle increases to 2% because of connection delays. With
MCU and most of the sensors in sleep mode, the base-line current consumption of the

system stands at 7 mA, where the gas sensor is the biggest contributor to this constant drain.

The time duration for which each sensor collects data contributes to the duty cycle of
the system, and impacts the overall power consumption. At times, multiple readings are
made and averaged out to minimize the noise. An array of data has to be sampled for the
microphone and the accelerometer for frequency analysis. The size of such an array is
restricted by the memory and processing resources available on the MCU, and is fixed
to a size N. Careful considerations need to be given while selecting the sampling rate
for such sensors. Data in the array of size N can be sampled in a shorter duration using
higher sampling rates, thus reducing the duty cycle and minimizing the power consumption.

However, these shorter duration recordings make it more likely to miss out on infrequent

Table 3.5: Current ratings of sensors and communication boards used in BeeDAS.

Device/Sensor Min/Sleep Typ. Max
CCS811 — Gas Sensor 19 nA 30mA | 54mA
BME280 — Temp, Humidity, Pressure 0.1 pA 3.6 nA -
MMAS8452Q — Accelerometer 6 uA - | 165 A
HX711 - Load Cell Amplifier 0.3 A - | 14mA
ADMP401 - Microphone - 210 puA | 260 A
LoRa Transceiver Module 915MHz 1.5 A | 12.1 mA | 120 mA
MKR NB 1500 — NB-IoT Board 1 mA 60 mA | 140 mA
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events. For example, recording audio data at around 4 ksps, with 2048 samples in each of
144 daily recordings, amounts to a total of 72 seconds of audio per day. But recording at 20
ksps with the same 2048 samples at same 10 minutes interval, equates to 14.4 seconds of
audio per day. Sampling at a rate higher by a factor of 7 enables us to observe frequencies
7 times higher, but for a window duration which is 7 times smaller. Since the sampling
rate in a system with fixed array of size N determines the duration of sampling window, the
bin width (resolution) of Fast Fourier Transform (FFT) also increases with the increase in
sampling rate. If more than one important frequency component falls within the frequency
resolution, the higher sampling rates can lead to loss of spectral information.

The sensor data is recorded every 10 minutes which provides a good resolution dataset,
but at the cost of high power consumption and increased data transmission. A 3.7 V
rechargeable LiPo battery with 6000 mAh charging capacity is used in BeeDAS. An
external 10W-5V solar panel with IP65 rating is used for charging the battery. The high
capacity battery ensures recordings of several days even when the solar panel is unable to
charge. To prevent power hungry NB-IoT transmitters from completely draining the battery,
the transmission is disabled when the battery level falls below 10%. This allows BeeDAS
to collect data for another 3 to 4 days on the battery reserve. Once the solar panel charges
the battery to more than 10%, the pending data is transmitted to the host system. This is
not an ideal scenario if real-time communication is of high priority, rather a trade-off to

conserve power to allow reliable collection of sensor data.

3.8 Data Storage

BeeDAS uses an on-board 32 GB SD card to record all the raw sensor data, as well as the
extracted features. The raw sensor data from the SD card can later be analysed to efficiently
evaluate the features, and to easily debug the feature extraction process. On-board storage
also enables storing of the calibration data for each sensor, instead of hard coding the
sensitivities and offsets. It also allows a cushion against failed communication by saving
the sensor data, which can be later re-transmitted. However, one problem with SD cards is
their reduced life inside the beehive due to the high humidity. The average life of standard
SD cards during deployment was observed to be between 8-10 months, after which the
faulty SD cards were not readable when tested on different platforms. This was a frequent
problem which was overcome by transitioning to industrial grade SD cards. These high

endurance SD cards have not yet failed during deployment.
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3.9 Summary

This chapter discussed BeeDAS, a data acquisition system for beehives. The objective of
designing this system was to evaluate different sensors for remote monitoring of hives, and
to collect a high quality beehive sensor dataset. The system has been designed with a focus
on low-power consumption and long-range communication. The sensors used in BeeDAS
were carefully selected, and data processing within the hive was used to generate 91 bytes
of data each cycle. This small data enabled the use of latest long-range communication
technologies such as LoORaWAN and NB-IoT for monitoring of hives. The power efficient
design of BeeDAS results in less than 2% duty cycle, achieved through low transmission
capacity but which still permits reliable monitoring of hives with a 10 minute interval. This
allowed the deployment of these systems in hives located at different geographical sites,
and in varying environmental conditions to enable collection of a diverse dataset. The
collected beehive sensor dataset and weather recordings of 1,250 days were also tested by
estimating the daily weight change of a hive using random forest. Weight change of a hive
is the biggest indicator of bee activity. Using all the features in the dataset for regression
achieved a Mean Absolute Error of 200 grams per day per hive, on a dataset of 1,250
days of beehive sensor and weather recordings. These weight estimation results show
that data collected by BeeDAS is rich with information about the bee activity. The issues
related to system power optimisation, and data storage were also discussed in detail. This
chapter helped identify the sensors, communication systems, and the design of a beehive

monitoring system suitable for remote deployments.
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Chapter 4

Weight Estimation of Beehives Using
LSTM-Based Deep Neural Network

The design, development and deployment of data acquisition systems was a difficult task. As
discussed in the previous chapter, the impact of harsh environment and weather, especially
rain on the measurement of hive weight, and the communication issues using NB-IoT
presented frequent challenges. It took us a little over two years and multiple design and
development cycles before we were able to deploy all eight sensor systems in hives for
reliable collection of data. This chapter explains the collected dataset and its significance,
and also investigates soft sensing using machine learning to eliminate expensive and/or
difficult to use sensors in beehive monitoring systems.

There are multiple parameters that are of paramount interest to beekeepers. One of
them is the monitoring of day to day weight changes of a hive, as these weight variations
are a good indicator of bee colony strength and honeybee activity [32]. But commercial
beehive weighing scales are expensive and difficult to deploy. This chapter explores the use
of deep learning to estimate the weight variations of a beehive using internal hive sensors,
which cost much less and are not exposed to extreme weather conditions outside the hive.
A model capable of estimating the correct trend of weight change is fit for purpose for most
of the beekeepers. This chapter uses a combination of different internal hive sensors to
gauge the complex activity of honeybees, along with external weather, seasonal, time and
size information of the hives. The beehive sensor data used to train the model was collected
using the systems described in previous chapter. To the best of our knowledge, this is the
first work on estimating the daily weight variations of a beehive using machine learning.
Figure 4.1 illustrates the proposed Weight Estimator for Beehives (WE-Bee).

The highlights of the proposed model are:

* Hybrid model for soft sensing and time series forecasting
» Cumulative beehive weight estimation over multiple weeks

* A fit for purpose design for cost sensitive market
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Figure 4.1: WE-Bee uses internal hive sensors, environmental features, season information,
time and hive size to estimate the daily weight variations of a beehive per hive frame.

4.1 Significance

As discussed in chapter 1, honeybees play a critical role in pollination. Commercial
beekeepers frequently move their hives between fields to provide pollination services. This
hive movement is very stressful for bees and can adversely impact the colony strength.
Excessive use of pesticides on agricultural land can also be harmful for the bees. Monitoring
the health and strength of bee colony is a genuine concern for the beekeepers, as well as for
the farmers who pay for the pollination service. Strong colonies contribute to pollination
much better compared to weak ones. A strong bee colony can bring up to 3 kg pollen and
nectar to the hive on a productive day. Thus, monitoring the weight of a hive provides a
very good assessment of bee colony strength/activity, and the contribution of hive towards
pollination [32].

Monitoring the weight of a hive however comes at a significant cost, with a single beehive
weighing scale often exceeding 500 AUD in price. Commercial beehive monitoring systems
use electronic sensors to collect data from inside the hive, and an external weighing scale to
monitor the weight of hive. The weighing scale is mostly sold as an optional add-on to the
monitoring system because of its cost, which is usually more than all of the internal sensors
put together [19, 18, 129]. Many factors contribute to the high price of beehive weighing
scales. Commercial beehives during peak honey flow in summer/spring can weigh upto
120 kg. The design of these scales should be rigid enough to support this weight, and the
electronic load sensors should be sensitive enough to pick up small variations of a few
grams. These scales are also designed to work in harsh weather conditions, to be able to

withstand extreme heat, cold, and rain, which adds to the cost. But despite high costs, their
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performance in the field is often below expectations. Furthermore, these scales are often
bulky, and have to be setup every time a hive is moved, adding to the setup time and the
physical effort required by the beekeepers. Repeated deployments from one field to another
also increase the wear and tear of these scales. Thus, an expensive and bulky scale under
each hive is not feasible for a majority of commercial beekeepers.

Authors in [96] conduct a very thorough survey of Precision Beekeeping. It is a branch
of Precision Agriculture focused on management of apiaries based on the monitoring of
individual bee colonies in order to minimize resource consumption, and maximize bee
productivity. The authors in their bibilometric analysis discover that from a total of 73
cited papers which use data for training machine models, only 6 use weight of the hives.
From our experience, this is because collecting weight data from hives even for research
purposes is expensive and very challenging. The authors in their conclusion state that
“Looking at beekeepers’ needs, it is clear that more affordable commercial solutions are
to be developed." Given the high costs of weighing scales in beehive monitoring systems
and the difficulties associated with their deployment, any progress towards cost-effective
alternatives for weight measurements of hive will contribute significantly towards wide

scale deployment of monitoring systems.

4.2 Challenges

The use of deep learning is explored to sense daily weight variations of a hive, using time
series data from inexpensive sensors. Previous research has identified factors that contribute
to weight variations of a hive [34, 130], including (but not limited to): number of forager
bees, availability of floral resources and their distance from the hive, food consumption
rate of the bees and the larvae, environment (temperature, rain, wind), and the evaporation
rate of nectar. With so many variables involved, estimating the weight variations of a hive
is a difficult, but an important problem to solve.

The strength of a honeybee colony is one of the biggest factors that contributes to the
weight gain of a hive. The number of foragers (bees that go out in search of food) in a hive
is directly proportional to total number of bees in the hive. A strong colony deploys more
foragers to find pollen and nectar, and the hive gains weight at a faster rate. The most direct
way to count foragers is to use cameras at the hive entrance. This however is not a very
cost effective solution, and requires a lot of power and data bandwidth, a luxury remote
beehive monitoring systems cannot afford. An indirect way is to estimate the strength of a
bee colony, by monitoring the thermoregulation of the colony. A strong colony maintains
the appropriate temperature and humidity levels inside the hive [62, 39, 28]. Hence the
variations in temperature and humidity inside the hive compared to the variations outside

the hive, provide a very good indication of the strength of the bee colony.
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The work of Hambleton et. al. [33] is one of the earliest studies on the effect of weather

and environment on beehive weight variations. Honeybees are inactive at night, thus the
hive cannot gain weight. However the hive usually loses weight at night because of nectar
evaporation and the food consumed by honeybees and larvae. The rate of food consumption
depends on the number of bees in the colony, and the temperature. Bees consume more
food in lower temperatures and increase their metabolism to keep the hive warm, which
increases CO- concentration inside the hive. The rate of evaporation from the hive depends

on the difference between the humidity levels inside and outside the hive.

In early morning, if the temperature outside the hive is appropriate, the forager bees
leave the hive in large numbers to check for pollen and nectar availability. This results in a
steep drop in the weight of a hive, which is referred to as ‘Breakfast Canyon’ [130]. The
duration of Breakfast Canyon depends on the time foragers take to return to the hive. If
there is plenty of pollen and nectar available closer to the hive, foragers return quickly,
otherwise it takes longer for them to return. This availability of foraging resources, and
their distance from the hive is a very difficult factor to estimate as it depends on the location
of hives, season, weather and types of flora available. The magnitude and the frequency of
bee buzz [43, 46], and bee waggle dance vibrations [55] are however good indicators of the

level of foraging activity.

Based on temperature suitability and other environmental conditions, honeybees collect
pollen and nectar throughout the day, resulting in the increase of hive weight [131]. In hot
summer days, bees stop foraging activity when the temperature outside the hive increases in
the middle of the day. Some flowers produce nectar only during early hours of the morning
or late in the evening, dictating the pattern of hive weight variation. High wind speeds
and rain disrupt bee activity and foraging. However rain can result in an increase in the
weight of a hive because rain water can accumulate on the top of flat hive surface, and the
wooden structure of the hive can absorb moisture resulting in weight gain. The effect of
rain depends on the absence/presence/quality of paint on the outer-surface of wooden hives.
Similarly, exposure to the sun or hot and dry weather can also lead to beehive structure
losing moisture and weight. On the other hand, hives made of plastic or polystyrene cannot

absorb any moisture, thus contribute very little to the hive weight variations.

The design and structure of a beehive weighing scale itself is a contributor to weight
variations. The load sensors, Analog to Digital Converters (ADC), and the frame of
weighing scale, are exposed to variations in temperature, humidity and other environmental
factors, which impact their performance. Research is continuing on better designs to
improve the performance of beehive weighing scales [34, 132, 133, 134]. Many commercial
beehive monitoring systems are also competing with each other to provide affordable
weighing scales. However given the durability and accuracy requirements of design, the
cost of commercial beehive weighing scales is still high for a majority of beekeepers,

preventing their large-scale deployment.
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4.3 Deep Learning for Data-Driven Soft Sensing

Deep learning has shown a lot of promise in forecasting time series data, and in soft sensing
for industrial processes. Soft sensing has been widely used in industrial processes to predict
difficult to measure variables [135]. However to the best of our knowledge, no work has
been done on estimating beehive weight or its variations. It is primarily because the weight
of a hive depends on multiple factors, and a wide range of sensor data is required from
the hive and its surroundings for reasonable estimations. Such datasets are not publicly
available. Designing and developing sensor systems suitable for beehives is challenging,
and the data collection from beehives is a time consuming process. One interesting work of
soft sensing on humans is [136], where the authors used wearable strain sensors to measure
angle of multiple joints in a human body to estimate the human gait. This work uses the
same principle, where easy to use sensors are utilized to sense a difficult to measure quantity.
However, the weight of a hive at any point of time is dependent upon the conditions at that
time, as well as those in the past. This requires the deep network to pay attention to sensor
data of an entire day to generate accurate estimates.

Long Short-Term Memory (LSTM) networks have been used successfully for time series
forecasting. Authors in this work [137] demonstrate the ability of bidirectional LSTMs and
Temporal Attention to learn long-term dependencies and correlation features which are
hidden. Authors in [47] compared LSTM networks with other machine learning approaches
to identify Queenlessness in hive using hive audio data, and found that LSTM networks
provided promising results. The authors in [138] compared different LSTM based networks
on time series data. Six different models were adapted for the task of forecasting hourly
rainfall, using the historical weather data of two decades from five different cities in UK.
The results showed that Bidirectional-LSTM Network had a comparable performance with
the Stacked-LSTM Network with two hidden layers. Whereas the Stacked-LSTM Network
with multiple hidden layers showed the worst performance. The authors also highlighted
the problem of LSTM models not generalizing well on unseen data, and over-fitting the
training data. This is a problem faced by many deep models and the training and testing of
models needs extra care to minimize the bias in results.

WE-Bee is designed as a hybrid model to soft-sense/estimate the time series data of
daily beehive weight variations using Bidirectional-LSTM. The cost effectiveness of WE-
Bee, and fit for purpose weight estimation in the field makes it a very useful tool for the

beekeepers in the cost-sensitive market.

4.4 Data Collection

To efficiently train any machine learning model, the quality and quantity of training data

plays an important role. The quality of sensor data largely depends upon the sensor system
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itself. A total of eight sensor systems were designed, developed and deployed at three

different sites to collect data from beehives. The microcontroller of the sensor system is
used to extract sensor features, and NB-IoT is used to transmit these features from the
remote site over a low bandwidth channel. The carefully designed feature extraction process
significantly reduces the volume of data, e.g. each audio recording of 2048 samples is
reduced to 17 features containing audio amplitude and frequency information of multiple
100 Hz bands in the bee buzz. Temperature and its gradient, both inside the hive and
outside the hive are used as features along with the temperature feel. Table 4.1 lists all the
parameters and features used by WE-Bee. The details of data collected using each sensor
system are given in Table 4.2.

Sensor systems with ID 14 and 15 were deployed in multiple hives, over different
periods of time. Whereas rest of the systems were deployed each in a single hive, and stayed
in their respective hives when the hives were moved to different sites. The deployment of
sensor systems in hives however was not continuous for several reasons. Hardware and
software problems in early stages of field deployment often forced us to pull systems from
the hives to address the issues. Sensors for CO, and hive weighing scales require frequent
re-calibration, for which they were repeatedly pulled out. The water proofing of weighing
scales has been a continuous concern, and heavy rains often cause malfunctioning of scales.
Sensor data where weighing scale(s) showed unrealistic variations due to rain was also
discarded from the dataset.

WE-Bee is designed to estimate the weight variation pattern for an entire day, hence
problems with the data for even a few hours on a given day make the data for the entire day

unreliable. Attempts to use interpolation to fix the outliers or missing sensor data did not

Table 4.1: The composition of parameters and the number of features contributed by each
parameter.

Measured Parameter Number of Features
Temperature inside the hive
Humidity inside the hive
Atmospheric pressure inside the hive
COy inside the hive

Vibrations inside the hive

Bee buzz (audio) inside the hive 1
| Temperature outside the hive | 2|
Temperature feel

2
1
Humidity outside the hive 1
1
1

N W) = = = N

Wind speed
Rainfall (in millimeter)

Time of the day
Week of the year (season information)

Number of frames in the hive
Total 36

[a—y
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Table 4.2: Break-down of data collected (days) for training and testing of WE-Bee. A total
of 1200 days of sensor data has been used in this chapter, collected from 3 different sites
using 8 sensor systems. Site-B is approximately 170 km north of Site-A, whereas Site-C
is further 200 km north of Site-B. System 14 and 15 were deployed to collect data from
November 2020, whereas rest of the systems were deployed from March 2021.

System | Site-A | Site-B | Site-C | Total
ID (days) | (days) | (days) | days
11 - 117 48 165
13 - 95 43 138
14 97 66 37 | 200
15 105 27 - 132
16 - 123 67 190
17 - 86 - 86
18 - 77 68 145
19 - 73 71 144
| Total | 202| 664 | 334 1200 |

provide adequate results because of the complex nature of data from bee colonies. Also, the
beehives need regular inspections to ensure the health of bees. The hives used in this study
were inspected every fortnight for most of the year, and once a month during winter to make
sure that the bees are healthy, and the queen is laying eggs. During these inspections, hive
frames were pulled out one by one, with the hive open for up to 30 minutes during each
inspection. Occasionally frames were added/removed/swapped during these inspections,
which led to a change in the weight of the hive. For these reasons, data from the days of

hive inspections is also not included in the dataset.

The variation in total days of data collected from each system in Table 4.2 is a result of
different days of deployment, as well as a different number of data days discarded from
the dataset for each system. The data is collected with an interval of 10 minutes, resulting
in 144 data points per hive per day. WE-Bee is designed using 48 data points per day,
with an interval of 30 minutes between consecutive samples, which is adequate to capture
important variations in the hive weight and other sensor data. The 144 data points collected
each day are used to increase the quantity of the training data, by extracting 3 sets of 48

data points from each day in the training set.

The activity of bees has a high correlation with the position of the sun. The position
of the sun not only depends on the time of the day but also on the season. To a large
extent, the seasons around the globe are determined by the latitude [139]. This information
is important for the neural networks to generate reasonable daily estimates of weight.
The information about the time of data acquisition and the week number of the year are
included in the dataset after cyclical encoding using sine/cosine transformation. The cyclic
encoding allows the start and end of the day/year to have a similar representation, and

avoid big discontinuities that can result with linear transformation. For example, last week
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of December (week-52) and first week of January (week-1) have very similar times for

sunrise/sunset, and the seasonal conditions for a specific geographic location. Hence their
encoding also need to be reflective of this similarity. Same is applicable for the time around
midnight, where both 23:59 and 00:01 are from the same part of the night despite belonging
to two different days. The use of both sine and cosine overcomes the repetitive nature of
curves, and time/week are encoded as a unique set of two points (features) each. For data
collected from sites with huge geographic difference along north and south, the latitude of
hive sites can be added to the dataset. This will allow the network to learn the seasonal
variations that occur with respect to latitude. Given little variation in the seasons of sites

used for the data collection in this study, latitude is not part of the dataset.

Weather has a huge impact on the honeybee activity, and is a significant factor in deter-
mining the hive weight variations. The data regarding external temperature, temperature
feel, humidity, rain and wind speed was collected using the online reports generated by
the Bureau of Meteorology (BOM) [110]. These reports are generated every 15 minutes
for BOM weather stations which are available throughout Australia. We chose the closest
weather station to the beehive site for our dataset. A significant lack of accuracy was
observed in the weather data at Site-C (Lesueur near Jurien Bay, Western Australia), which
is located approximately 48 km away from the nearest weather station. Rain was often
reported when there was none at the site of hives, which was evident by solar panels
charging the batteries. At times the beehives experienced rain, which resulted in noisy data
on the weighing scales, but was not reported by the weather station site. Site-A (Capel,
Western Australia) and Site-B (UWA Crawley Campus, Western Australia) were 8.4 km
and 5.3 km away from the nearest BOM stations respectively, and their weather data was
accurate for the hive positions. For future work, use of dedicated weather stations for hive
sites located more than 20 km away from BOM stations would help improve the quality of

weight estimates.

Size of a beehive also determines the capacity of the hive, which is one of the factors
impacting the weight variations. Beehives come in different shapes and sizes, and the most
common ones consist of multiple chambers stacked on top of each other. Each chamber
contains multiple frames, which are used by bees to make a wax comb to raise the brood,
or to store pollen and nectar. There is no standard design of a beehive, and most of the
beekeepers have their own preferences. Some hives have 5 frames per chamber whereas
some have up to 10 frames. Even the size (dimensions) of frames can vary from hive to hive.
Beekeepers also change the number of chambers in a hive from time to time, depending

upon the availability of nectar and the strength of the bee colony.

The data collected for this study is from hives of different sizes, however the size of
the frames used in all these hives is the same. A hive consisting of N chambers with M
frames per chamber, will be referred to as a hive of size NV x M frames. This allows the

number of frames to be used as a standard measurement for hive size, and the product of N
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Figure 4.2: The Network architecture of WE-Bee. The input features are represented by
x¢, whereas vy is the output of estimated weight variation for a specific time step ¢. With a
total of 48 samples of data per day, n is 48 in this particular case.

and M (number of total frames in the hive) can be used as the total capacity of the hive.
The total number of frames in each hive is used to calculate the net weight variation of
the entire hive, based on variations estimated per frame using WE-Bee. The baseline for
hive weight was obtained by measuring several hives with empty frames and no honeybees.
The average weight of empty hive structure (not part of the dataset) is 1.06 kg per frame,
whereas the average weight of hives including the structure, pollen/nectar and bees in this

dataset is 2.39 kg per frame.

4.5 Network and Experimental Setup

The deep learning architecture of WE-Bee is inspired by [137], where the authors use
multivariate time series forecasting using attention-based encoder—decoder framework.
The authors use their network to predict the values of a time series data in future, however
we estimate the values of an unknown sensor (weight) for the same time. Previous sections
explain how weight of a beehive is dependent on many different factors. WE-Bee exploits
these dependencies to estimate/predict a series of weight values based on time series data
collected from internal hive sensors and relevant information. Input to the network is a set
of data collected from internal hive sensors such as temperature, humidity, atmospheric
pressure, CO,, acoustics and vibrations. Information about the weather, week of the year
(seasonal information), time of the day, and the size of hive is also part of input. All the
inputs are processed to create a feature vector x; of size 36 (see Table 4.1) for each time
step ¢, with a total of 48 time steps per day. Figure 4.2 shows the network architecture of
WE-Bee, with hyper-parameter settings given in Table 4.3.

Daily weight variation estimation of a beehive is a many-to-many sequence-based
problem, with both input and output having multiple time-steps. The change in hive weight

at any time step, with midnight weight as a reference, is dependent upon all the bee activity
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and environmental conditions till that time step. The weight itself varies in a pattern

and each estimation should properly fit between its neighboring estimations. The use of
bidirectional LSTMs (Bi-LSTMs) as our encoder and decoder leverages both past and
future contexts within a day. This allows the network to be robust against occasional noisy
samples in the input features, and helps with accurate weight estimations. As obvious
from the name, LSTMs have both long and short term memory. The short term memory
is represented by h;, or the hidden state. In bi-directional LSTMs, these hidden states
are shared in both forward and backward direction across different time steps. Attention
mechanism of a machine learning model helps the model to focus on data which is more
important. The attention layer learns the importance of different inputs during the training
process. The hidden states of the encoder are attended by the decoder via an attention
layer, to utilise the most important information for transforming (decoding) input features
to weight estimation y; for each time step .

Let x; and y, be the input feature vector and output weight estimate respectively for every
time step t, where ¢t = [1 : n| for each day. Our network first projects z; onto a sequence
of 250 dimensional embeddings z;. These embeddings are encoded by a Bi-LSTM into a
context matrix, which is a concatenation of its hidden states h; (forward E) and backward

).
he = [hy, he]

The decoder estimates the weight using the context vectors C';. The dot-product attention

4.1)

mechanism is used to compute the context vectors, which are generated as a weighted
sum of the hidden states of the encoder Bi-LSTM. The attention mechanism passes on the
most useful encoder hidden representations to the decoder. The context vector C; can be
formalised as:

e = [W X ht] +0b (42)

Table 4.3: Hyper-parameter settings for WE-Bee.

Parameter Value
Units in input dense layer 250
Activation function of dense layer Leaky ReLU
Units in encoder 250
Units in decoder 500
Bi-LSTM merge mode concat
Activation function of attention layer softmax
Dropout (dense, encoder, decoder) 0.7

Units in output dense layer 1

Activation function of output layer linear
Max training epochs 1000
Batch size 128
Loss function MSE
Optimizer Adam
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Table 4.4: Results from 5-Fold cross-validation with a random shuffle of entire dataset. The
Mean Square Error (MSE) is reported for 11,520 data-points (240 days x 48 data-points per
day) per fold. Mean Absolute Error (MAE) is reported as a percentage of error, calculated
using the average weight of 2.39 kg per frame in the dataset. The scatter plot for weight
labels and weight estimations at the end of day is shown in Figure 4.4.

MSE | MAE | Variance of
Fold (grams/frame) %o %o errors
1 14.8 | 0.58 0.74
2 139 | 0.54 0.67
3 132 | 0.54 0.60
4 13.3 | 0.56 0.67
5 12.7 | 0.53 0.61
| Avg | 136 055 0.66 |
Std Dev 0.8 | 0.02 0.06

where W and b are attention weight and attention bias respectively.
a; = Softmax(e;) 4.3)

Ct = a; X ht (44)

We used Keras, which is a high-level API of TensorFlow 2 to implement our model.
The system used for training has an Intel® Core™ i7-10700K CPU @ 3.80GHz with
16 cores, 32 GB of RAM and a single NVIDIA GeForce RTX 2080 SUPER GPU with
8GB of memory. The network has approximately 5 million trainable parameters. 5-fold
cross-validation was used to test the performance of WE-Bee and the MSE of test set was

monitored during training with an early stopping (patience of 100) to avoid over-fitting.

4.6 Results and Analysis

The quantitative results for 5-fold cross-validation for all folds of dataset are shown in
Table 4.4. The test scores of Mean Square Error (MSE) for each fold are reported in grams
per frame. The average error for all folds is 13.58 grams, with a standard deviation of 0.8
grams per frame. To make more sense of what these errors represent, the label variations
as well as the estimated variations are added with an offset of 2.39 kg, which is the average
weight per frame in our dataset. The percentage error between estimated weight and label
weight for the frame is then computed for each point in each day in the fold. The percentage
Mean Absolute Error (MAE) and the variance of percentage error for each fold are reported
in last two columns of Table 4.4 respectively.

Some examples of estimated weight variations per frame by WE-Bee, as well as the
label weight variations per frame from the test set are shown in Figure 4.3. A total of 48

estimations are generated for each day, with the weight at midnight (00:00) as starting

81



4. WEIGHT ESTIMATION OF BEEHIVES USING LSTM-BASED DEEP
NEURAL NETWORK

150

° Lak?els . (a) (b)
100 1 = Estimations

(9]
o
L

o
L

]
o

150
(c) (d)

100 A QFN 1

Weight change (grams)

3

o

-50

00:00 05:00 10:00 15:00 20:00  00:00 05:00 10:00 15:00 20:00

Time (HH:MM)
Figure 4.3: Test-set examples of daily weight variation labels per hive frame, and the
estimations for the same using WE-Bee. First weight reading for each day at 00:00 is the
reference for variations throughout the day. Daily weight variation estimations leading to a
negligible error at the end of the day are shown in (a) and (b). An over-estimate of the daily

weight on a day with occasional rain can be observed in (c). Example of an under-estimate
of the daily weight is shown in (d).

reference for each day. The daily estimations can be divided into two categories. One where
errors for all estimations within a day add to a negligible error by the end of the day, as
shown in examples of Figure 4.3 (a) and (b). The second category is where the accumulated
error for all 48 estimations within a day lead to either an over-estimate or under-estimate of

weight variation, as shown in examples of Figure 4.3 (c) and (d) respectively.

For cumulative estimation of hive weight over multiple days, estimation for each day
starts from where the estimation of previous day had ended. So the error in weight estimation
at the end of the day (see Figure 4.3 (c) and (d)), propagates to the weight estimations
for next day(s). A biased network with minor but consistent over/under-estimates will
lead to a huge error over cumulative estimations. However a network with the Gaussian
distribution of errors, will have a smaller accumulated error. Figure 4.4 shows the scatter
plot of actual against estimated weight per frame per day. The network shows slight bias
towards over-estimating the weight when the hive loses weight for a given day (cases where
actual weight is less than 2.39 kg per frame). However when the hive gains weight by
the end of day (cases where actual weight is more than 2.39 kg per frame), the network
is slightly biased towards under-estimating the weight. Compared to the bias observed
with random forests in Section 3.4, this bias in estimations is significantly less. The mean
absolute error is around 0.5% at 2.35 kg, and around 1% at 2.50 kg with respect to actual

weight of hive per frame.
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Figure 4.4: The scatter plot of actual weight of frame at the end of day, against the estimated
weight for the same. These results for 1200 days in the dataset are obtained after merging
the test results of all 5 folds (Table 4.4). The Pearson correlation between the two is r =
0.794, with p less than 0.001.

4.6.1 Performance on Unseen Sensors/Hives

The performance of deep networks is put to real test when they encounter unseen data. An
issues with electronic sensor data is that sensors tend to add a specific bias to collected data,
and this bias varies even between the sensors of the same type. In long term deployment of
sensors, miss-calibration is a common problem and the biggest contributor to the sensor
bias. This different bias of different senors for each system acts as a signature for the system,
which deep networks can exploit and overfit for the systems in the training set. In a random
shuffle, the data collected by each sensor system is available in both the training set and
the test set. So instead of using a randomly shuffled dataset for k-fold cross-validation for
training and testing, a system-fold (with 8 systems) cross validation is used where each
fold contains the data collected from one particular sensor system.

System-fold cross validation allows thorough testing of the performance of the deep
learning model on unseen data. For this, the models were trained using data collected by
all sensor systems except for one, and the performance was tested on the data from the one
system which was not used for training. This was repeated 8 times to test data from each
sensor system. As sensor systems are allocated to specific hives, this allowed the evaluation
of WE-Bee on hives which were not part of the training set. The training sets were shuffled
whereas test sets were not. The non-shuffled test sets allow the graphical visualisation of

the long term weight tracking capabilities of WE-Bee.
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Table 4.5: Results from training on multiple hives and testing on an unseen hive. The
details of data collected from each system are reported in Table 4.2.

System MSE | MAE | Variance of
ID (grams/frame) %o %o errors
11 20.7 0.79 1.24

13 16.8 0.73 0.98

14 12.2 0.58 0.66

15 10.3 0.54 0.51

16 16.8 0.72 1.04

17 7.6 0.38 0.27

18 16.9 0.65 0.90

19 21.7 0.69 1.23
Avg 15.4 0.64 0.85
Std. Dev. 4.9 0.13 0.35

The sensor system specific results are reported in Table 4.5, where the first column
indicates the system ID which was used for testing, but not for the training. A more realistic
deviation in these results can be observed, with relatively high MSE and percentage MAE
compared to those reported in Table 4.4. Errors computed for each sensor system were
pooled together and Figure 4.5 shows the histogram of errors in grams per frame between
labels and estimations for all the sensor systems combined. However this histogram is
only for the error at the end of each day, representing the propagation errors for 1200 days.
The Gaussian distribution of these errors indicates that there is no major bias in weight
estimations. The average weight of hives per frame in this dataset is 2,390 grams. Majority
of daily errors in the histogram are between 420 grams per frame per day, which is less
than 1% of average weight per frame.

4.6.2 Performance on Cumulative Estimation

The cumulative weight estimation capability of WE-Bee for unseen data was tested on data
collected using sensor system 14. This system was deployed in hives for a total of 200
days, most for any system at the time of this study. The test set in this case consists of data
collected via system 14 only, and has not been shuffled to preserve the order of days. As a
first step, all the frame weight variation labels for sensor system 14 were stitched together.
This was followed by converting the frame weight variations into hive weight variations,
by multiplying them with the actual number of frames in hive on each day. This process
was repeated for the daily frame weight variation estimations generated by WE-Bee as well.
The starting offset for both the labels and estimations was set using the actual weight of
the hive measured on day-0. This generated two sequences, one for hive weight labels and

other for hive weight estimations as shown in Figure 4.6.
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Figure 4.5: Histogram of error (in grams per frame) between final label and final estimation
for each day (propagation error), for the 1,200 days in the dataset. Results obtained after
individually testing each system (Table 4.5) are pooled together to obtain the error histogram.

The sharp increase in the weight around day-5, as shown in Figure 4.6, is a result of a
beekeeper merging two hives together to make a stronger colony, which changed the size
of the hive from 2 x 10 frames to 3 x 10 frames. The weight estimates are reasonable till
around day-30, after which the model over-estimates the daily weights till day-97. The
major reason for the over-estimations in this period is the limited training data. System 14
along with system 15 were the only two systems deployed at Site-A. During this period,
other systems were not deployed in any hives. With system 14 being used for testing,
the network only has data from system 15 available for training for this time of the year.
The variations in weight are very season specific, and the lack of training data for this
season makes the network under perform. After day-97, the system 14 was deployed in
new hive of size 2 x 8 frames at Site-B, where the other seven systems were also deployed
to collect data form beehives of varying strengths. With diverse data available for training,
the performance of WE-Bee improves drastically. The trends of labels and estimations

between day-98 and day-200 in Figure 4.6 are very similar.
WE-Bee is designed to estimate the weight of hive based on activity of bees picked

up by the sensors. Sharp changes in the weight as a result of external agents, such as
hive manipulations by beekeeper cannot be estimated using these sensors. There are two
methods to manage such weight changes. First is to update the model with the total number
of frames inside the modified structure, and let the model estimate the new net weight
based on its old weight estimates per frame. This however is based on the assumption that

the composition of honey, pollen, and bees in the new structure has not changed. This

85



4. WEIGHT ESTIMATION OF BEEHIVES USING LSTM-BASED DEEP
NEURAL NETWORK

composition usually changes after major hive manipulations as honey filled frames in the

hive are often replaced with empty or partially filled frames. This can lead to an error in net
weight estimation. Also, if daily estimations until hive manipulation have an accumulated
error, that error will also propagate to the estimates of new weight of modified hive structure.
Second approach is to manually update the model with new net weight of the hive, and the
model can then continue the estimations from that new baseline weight. This will limit
the duration and the magnitude of the propagation error between consecutive inspections.
However the new weight of the hive either has to be measured using a weighing scale, the
instrument this work aims to eliminate, or the beekeeper has to take a calculated guess
about the hive weight. In our experience, beekeepers can take a reasonably accurate guess
about the weight of a hive once they have seen the status of frames and bees during the
hive inspection, and know the extent of their manipulation. They can update the net weight

of the hive via a user interface, which can be used as the new baseline weight for the hive.

The weight of hive at day-98, when sensor system 14 was moved to a new hive, is
calculated using the first approach discussed in the paragraph above. The model uses the
last estimated weight from the previous hive with a total of 30 frames (day-97), and the

size of the new hive with a total of 16 frames to calculate the new weight baseline. This
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Figure 4.6: The weight of hive(s) with sensor system 14 estimated for 200 days. Between
day-30 and day-97, WE-Bee over-estimates the daily weight change, and the error accumu-
lates over time resulting in diverging patterns. System 14 is then deployed at a different
hive on day-98, and the size of hive changes from 3 x 10 frames to 2 x 8 frames, resulting
in a sharp drop in the weight. From day-98, the weight variation estimations are quite
accurate till day-200, and only the previously accumulated error can be seen propagating
during this period.
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results in an error of net weight estimation on day-98. Despite this inherent error (mostly
propagation), WE-Bee correctly estimates the trend of change in weight for more than 14

weeks after day-98. This trend is often an adequate piece of information for the beekeepers.

4.7 Summary

This chapter investigated a deep learning model for the task of estimating daily weigh
variations of a beehive. The dataset used for training the machine learning model was
explained, along with the designed model. The proposed model WE-Bee used LSTM
encoders and decoders and was trained on 6 months of collected data. The features
for training were selected after an in-depth study of bee behaviour, and the impact of
environment on bee foraging activity. The performance of model was thoroughly tested
using standard k-fold cross validation, and using system-fold cross validation to assess
the performance on data from unseen hives/sensors. The model showed an average mean
absolute error of 0.64% for estimating a total of 57,600 weight points for 1,200 days in the
dataset. The results of daily weight estimations using WE-Bee showed decent accuracy on
a model that is easy to train using a single GPU with 8 GB of memory. The cumulative

estimation also showed promising results over multiple weeks for beehive weight estimation.

87



4. WEIGHT ESTIMATION OF BEEHIVES USING LSTM-BASED DEEP
NEURAL NETWORK

88



Chapter 5

A Deep Learning Model to Optimize
Beehive Monitoring System for the Task
of Daily Weight Estimation

Previous chapter discussed the use of LSTM encoders and decoders for the task of beehive
weight estimation. The results demonstrate that deep learning can be used for estimating
daily beehive weight variations with a good accuracy. In this chapter, we ask whether the
same results can be achieved on a bigger dataset, but on an optimised system with fewer
sensors. Fewer sensors reduce the cost and complexity of the monitoring systems. To
investigate this, self-attention encoders are used to analyse the role of individual sensors in
daily beehive weight variation estimations. The information about contribution of different
sensors and features for a specific task can help design more efficient and cost effective
beehive monitoring systems, by removing the non-contributing sensors and features from
the design. This knowledge about contribution of different sensors will also improve the
explainability of the Al, which can help build the confidence of beekeepers in the use of

machine learning for beehive weight estimation.

5.1 Background

Deep learning models have shown promising results on performing different tasks on
complex time series data [140]. Authors in [141] proposed the use of transformers, a deep
network consisting of encoders and decoders with multi-head attention for predicting the
next correct word in machine translation. Transformers have since been used for prediction
in machine vision [142], bio-informatics [143] and many other areas.

Authors in [144] use multiple streams of encoders in parallel, where each encoder
pays attention to only one resolution of input in each speech frame for the task of speech
recognition. For beehive sensor data for an entire day, there are two aspects that need

attention. The relationship between data/features from different sensors at a particular
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Figure 5.1: Apis-Prime uses internal hive sensors, environmental features, season informa-
tion, and hive size to estimate the daily weight variations of a beehive per hive frame using
two self-attention encoders in parallel.

time instance, and the relationship between data/features from a particular sensor for
different times of the day. This chapter proposes a deep neural network Apis-Prime, which
comprises two parallel self-attention encoders (without any decoders) to exploit these two
independent relationships, for the task of beehive weight estimation. In chapter 4, attention
layer was used between the encoder and decoder to help decoder focus on more important
encodings generated by the encoder. In this chapter, self-attention layer at the input looks
for dependencies within (self) the input data to identify what parts should be paid more
attention to. This helps make most of the input data which is rich with information.

To optimize the system for the task of daily weight estimation, this chapter uses the
attention weights of trained encoders of Apis-Prime to evaluate the sensors used by the
monitoring systems. This evaluation is used to identify and remove the unnecessary sensor
data/features from the dataset, reducing the number of sensor features from 36 to 23, hence
providing a significant optimization. We provide a performance analysis of beehive weight
estimations by Apis-Prime using the complete, as well as the optimized dataset on 2,170
days of beehive sensor recordings. Equally good results of daily weight estimations using
the optimized feature set demonstrate the efficacy of proposed model for optimization of

beehive monitoring systems for the task of weight estimation.

5.2 Network and Experimental Setup

The data used to train and test Apis-Prime was collected over a 12 month period using all 8
sensor systems (March 2021 - March 2022). The average weight of empty hive structure

(not part of the dataset) is the same as reported in previous chapter i.e. 1.06 kg per frame,
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whereas the average weight of hives with structure, pollen/nectar and bees in this dataset
has increased to 2.69 kg per frame. Same set of features is used to train Apis-Prime as
discussed in previous chapter (see Table 4.1). The details of data collected using each

sensor system for this dataset are given in Table 5.1.

The architecture of Apis-Prime is based on the encoder of transformer [141]. Trans-
formers composed of encoders and decoders along with multi-head attention mechanism
were first introduced for the task of machine language translation. Apis-Prime uses only the
encoder part of transformer with some modifications to estimate the weight data, using the
data from other sensors. Previous sections explain how weight of a beehive is dependent on
many different factors. Apis-Prime exploits these dependencies to estimate/predict a series
of weight values based on time series data collected from internal hive sensors and other
relevant information. Input to the network is a set of daily data collected from internal hive
sensors such as temperature, humidity, atmospheric pressure, CO,, acoustics and vibrations.
Information about the weather, week of the year (seasonal information), time of the day,
and the size of hive is also part of input. Self-attention layer looks for dependencies within
(self) the input data to identify what parts should be paid more attention to. This helps
make most of the input data which is rich with information. The network is trained to
generate the daily weight variations (per frame) of a hive as an output, the labels of which
are obtained using custom built weighing scales deployed with each sensor system. All the
inputs are normalized to create a feature matrix F of size 48 x36, where 48 is the number
of data samples per day and 36 is the number of features (see Table 4.1) extracted from
different sensors within each data sample. Figure 5.2 shows the network architecture of

Apis-Prime, with parameter settings provided in Table 5.2.

We use the weight of a hive at midnight as a reference, and any change in hive weight

Table 5.1: Break-down of data collected (days) for training and testing of Apis-Prime. A
total of 2,170 days of sensor data has been collected from 3 different sites, using 8 sensor
systems. System 14 and 15 were deployed to collect data from November 2020, whereas
rest of the systems were deployed from March 2021. The data used in this chapter was
collected till the end of March 2022.

System | Site-A | Site-B | Site-C | Total
ID (days) | (days) | (days) | days
11 - 232 59 291
13 - 182 70 252
14 97 155 37 289
15 105 124 - 229
16 - 214 96 310
17 - 201 50 251
18 - 191 86 277
19 - 182 89 271

| Total || 202 | 1481 | 487 | 2170 |
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Figure 5.2: The network architecture of Apis-Prime, where sensor features of entire day
are fed as inputs. The multi-head self-attention encoder on left exploits the feature based
relationships, whereas the encoder at the right exploits the time based relationships in the
daily sensor data. The outputs of these encoders are passed through flatten, dropout and
dense layers before they are concatenated. Another dropout layer followed by dense and
reshape layers generate the weight variation estimates for the entire day.

between midnight and a time instance in next 24 Hr window is dependent upon all the bee
activity and environmental conditions till that time instance. The time-series data/features
from all the sensors for an entire day (midnight to midnight) are shaped into a 2-dimensional
matrix, with features on one axis and time on the other. Self-attention encoders use this

2-dimensional matrix as input, and exploit the relationships and dependencies within this

Table 5.2: Design and training parameters for Apis-Prime.

Parameter Value
Number of encoders 2
Attention heads per encoder 2
Head size 512
Convolutional filters per encoder 512
Filter/kernel size 7
Convolution activation function tanh
Dropout 0.8
Activation function of dense layers linear
Max training epochs 2000
Early stopping patience 250
Batch size 16
Loss function MSE
Learning rate scheduler Decaying sinusoidal
Learning rate optimizer Adam
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data. Self-attention encoders and decoders were originally proposed for the task of language
translation [141]. The dependencies and relationships within a sentence exist only in a
single dimension, as words in a sentence appear in a sequence one after the other. Hence,
self-attention encoders by design pay attention to data in one dimension. However in
case of multi-sensory data from beehives, the relationships exists in two dimensions; one
across different sensors and the other across time. To exploit the relationships in both these
dimensions, Apis-Prime uses two self-attention encoders in parallel, but with different
inputs. E'ncoder 4 in Apis-Prime uses feature matrix (F) of entire day as input, and exploits
the relationships between different features across sensor data. Whereas Encoderg uses
the transpose of feature matrix (FT) as input, and exploits the relationship between features
across different times of the day. This simple manipulation of transposing the 2-D input
matrix enables the two encoders to pay attention to relationships in different dimensions.
This also enables the evaluation of the importance or usefulness of different sensors in the
system, and different time periods for data collection during the day. The use of attention
weights of the two trained encoders for evaluation and optimization of system is discussed
in the last section.

Let X 4 and X g be the inputs of Encoder 4 and Encoderp respectively, and F' be the
matrix of size 48 x 36, consisting of daily features from hive, environment and weather.

The inputs to the encoders are defined as
XA=F 5.1

Xg=F"T (5.2)

For Encoder; with j = [A, B] and

Head,;; withi = [0, 1] for the two heads of each encoder

Head;; = Sel f Attention(Q, K, V) (5.3)
where
Q= X;Wg (5.4)
K = X;Wk (5.5)
V=XWY (5.6)

where Wi?, Wg ,and VVZ‘; are independently learned projection matrices corresponding

to Query, Key and Value respectively for each head for each encoder.

Sel f Attention(Q, K, V) = softmax QKT 74 (5.7)
Y vy '

where d, is the dimension of (), K and V', which is set to 512 for this network.
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For Encoder 4

MH, = MultiHeads(Q, K,V') = Concat(Head 4, HeadgA)WA (5.8)

Ca = Normalize(X 4+ MHy) (5.9
Ex = Normalize(Convld(Ca) + Cy) (5.10)

For Encoderpg
MHp = MultiHeadg(Q, K,V) = Concat(Head, g, Headyg)W? (5.11)
Cp = Normalize(Xp + M Hg) (5.12)
Ep = Normalize(Convld(Cg) + Cp) (5.13)

where W4 and W2 are the learned projection matrices and E4 and Ep are the outputs

of two encoders. These outputs are passed through layers to obtain D 4 and D, where
D4 = Dense(Dropout(Flatten(E4))) (5.14)

Dp = Dense(Dropout(Flatten(Eg))) (5.15)

and the final output Y, which is a vector of size 48 x 1 containing the daily weight

variation estimates per hive frame is obtained as
Y = Dense(Dropout(Concat(D 4, Dg))) (5.16)

We used Keras to implement Apis-Prime and used the same system described in
previous chapter to train the model. The network of Apis-Prime has approximately 5.2
million trainable parameters. This network was also trained using the data collected from 7
sensor systems, and tested on the data collected from the 8" sensor system. This process
was repeated 8 times to test the performance of Apis-Prime on all 8 sensor systems. The
MSE of test set was monitored during the training with an early stopping in place to avoid

over-fitting.

5.3 Experimental Results

The same approach of using the system-fold cross validation described in Section 4.6.1 of
previous chapter is used to evaluate Apis-Prime as well as WE-Bee on the bigger dataset for
comparison. Use of system-fold cross validation allows thorough testing of the performance
of the models on unseen data. For this, the models were trained using data collected by all

sensor systems except for one, and the performance was tested on the data from the one
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Table 5.3: Results from system-fold training on multiple hives and testing on unseen hives
using Apis-Prime, and WE-Bee. The average results represent the scores for all 2,170 days
with 48 points per day, making a total of 104,160 weight points in the dataset. Bold font
indicates the better score between the two models. The details of data collected from each
system are reported in Table 5.1.

Test Test error Absolute percentage | Absolute percentage
System (grams) error (Mean) error (Variance)

Apis-Prime | WE-Bee | Apis-Prime | WE-Bee | Apis-Prime | WE-Bee

11 24.1 26.2 0.60 0.62 0.75 0.86

13 28.5 30.2 0.65 0.67 0.80 0.91

14 13.7 15.4 0.47 0.54 0.43 0.54

15 12.1 11.3 0.62 0.56 0.91 0.68

16 16.8 18.7 0.51 0.54 0.50 0.63

17 17.0 17.2 0.48 0.49 0.42 0.46

18 26.9 27.5 0.60 0.59 0.70 0.69

19 18.8 21.9 0.47 0.51 0.46 0.54

Average 19.7 21.05 0.55 0.56 0.62 0.66

Std. Dev. 6.29 6.55 0.08 0.06 0.20 0.16

system which was not used for training. This was repeated 8 times to test data from each
sensor system. The training sets were shuffled whereas test sets were not. The non-shuffled
test sets allow the graphical visualisation of the long term weight tracking capabilities of
Apis-Prime.

Table 5.3 reports the sensor system specific results for both models. The first column
is for the ID of system used for testing. The reported test errors are the Mean Square
Errors (MSE) on test set, in grams per frame. The absolute percentage errors are also
calculated for the entire test set, using the actual and estimated net daily weights of the
frame. The mean of these absolute percentage errors for all the hives is consistently less
than 1 percent, which is very promising. In most cases, Apis-Prime shows better weight
estimation capabilities than WE-Bee. Only for the data collected using system with ID 15,
WE-Bee shows a slightly better performance.

For long term tracking of the hive weight, the error at the end of the day is particularly
important, as it propagates to the weight estimations for next day(s). The daily errors
computed for each sensor system were pooled together, and Figure 5.3 shows the histogram
of errors between labels and estimations for all the sensor systems at the end of each day,
representing the accumulated propagation error for each day in a dataset of 2,170 days. The
Gaussian distribution of errors indicate that there is no major bias in the estimations, and
83.5% errors at the end of the day are within 25 grams per frame. With an average hive
frame weight of 2,687 grams in the dataset, this equates to less than 1% in daily error for
83.5% days.

Some examples of estimated weight variations per frame by Apis-Prime, as well as

the label weight variations per frame from the test set are shown in Figure 5.4. A total of
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Figure 5.3: Histogram of error (in grams per frame) for Apis-Prime between final label
and final estimation for each day (propagation error), for the entire dataset of 2,170 days.
Results obtained after individually testing each system (Table 5.3) are pooled together to
obtain this error histogram. A total of 357 out of 2,170 days have a daily error of more
than 25 grams per frame.
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Figure 5.4: Test-set examples of daily weight variation labels per hive frame, and the
estimations for the same using Apis-Prime. First weight reading for each day at 00:00 is
the reference for variations throughout the day. Daily weight variation estimations leading
to a negligible error at the end of the day are shown in (a) and (c). An under-estimate of
the daily weight can be observed in (b). Example of an over-estimate of the daily weight
on a day with noisy weight data is shown in (d).

96



48 estimations are generated for each day, with the weight at midnight (00:00) as starting
reference for each day. The daily estimations can be divided into two categories. One where
errors for all estimations within a day add to a negligible error by the end of the day, as
shown in examples of Figure 5.4 (a) and (c). The second category is where the accumulated
error for all 48 estimations within a day leads to an under-estimate or over-estimate of weight
variation, as shown in examples of Figure 5.4 (b) and (d) respectively. As discussed above,
the greater the over/under-estimate at the end of the day, greater the error that propagates

to the estimations for following day(s) in long term or cumulative tracking.

5.3.1 Performance on Cumulative Estimation

The error in the weight estimation at the end of a day propagates to the weight estimations
for next days as discussed in Section 4.6. The scatter plot of actual against estimated weight
change per frame per day is shown in Figure 5.5. These estimations show bias when the
actual weight change is less than -25 grams per frame, and when the actual weight change is

greater than 75 grams per frame. Given the average weight of a hive frame at 2,687 grams
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Figure 5.5: The scatter plot of actual weight change of a hive frame at the end of day,
against the estimated weight change for the same. These results for 2,170 days in the dataset
are obtained after merging the test results of all 8 systems tested separately (Table 5.3).
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Figure 5.6: The weight of a hive with sensor system 16 estimated for 310 days. The sharp
changes in the weight represent the structural changes in the hive, such as addition/removal
of honey chambers or swapping of frames with other hives. Upon such change, the weight
estimation model is provided with a new reference (true weight of the hive). Apis-Prime uses
this new baseline/reference, and daily weight variation estimations to continue estimating
the total weight. From day-60 to day-180, the model continuously tracks the weight of hive
for 120 days with very good accuracy, and shows reasonable accuracy for other smaller
segments between consecutive hive manipulations.

in the dataset, the bias error of around 50 grams and -75 grams at the extremes equate to
an error of around 2% and -3% respectively, which is very reasonable for an estimate.

The cumulative weight estimation capability of Apis-Prime for unseen data is shared
on data collected using sensor system 16. This system was deployed in hives for a total
of 310 days, more than any other sensor system used in the dataset. The test set in this
case consists of data collected via system 16 only, and has not been shuffled to preserve
the order of days. The same methodology explained in Section 4.6.2 was used to test the
cumulative estimation capability of Apis-Prime. This generated two sequences as shown in
Figure 5.6, one for hive weight labels and other for hive weight estimations.

The sharp increase in the weight around day-60, as shown in Figure 5.6, is a result of
a beekeeper adding a partially filled honey chamber to the hive, which changed the size
of the hive from 1 x 8 frames to 2 x 8 frames. Around day-210, the beekeeper took two
full honey chambers off from the hive, and replaced them with chambers containing empty
frames to make more space for the honey. All other sharp changes in the weight are also a
result of manipulations carried out by the beekeeper. These manipulations are a routine
practice where a beekeeper changes the size of a hive based on his/her assessment of bee

colony and the seasonal needs.
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As discussed in Section 4.6.2, there are two methods to manage the sharp weight changes
which originate from hive manipulations. The example of cumulative weight estimation in
chapter 4 used the first method, whereas this case uses the second method. We update the
base weight of the estimations using the actual weight of the hive after these manipulations,
in order to test the long term tracking performance of Apis-Prime. If the actual weight of a
hive is not available, the weight guessed by the beekeeper can also be used to update the
base weight. A total of 8 instances of hive manipulation (including day-0), and update of
base weight can be observed for sensor system 16 in Figure 5.6. The tracking of weights is
very reasonable for a majority of 310 days. The only days where Apis-Prime significantly
underestimates the weight gain is during the period around day-195 and from day-290
onwards. But even for these days, the network estimates the correct trend of weight change
i.e. net increase in the weight of the hive. In most cases, the beekeepers are interested in

finding out the correct trend of weight gain or loss, rather than the exact weight of the hive.

5.4 System Optimization Using Self-Attention Encoders

As discussed in the previous section, Apis-Prime uses two self-attention encoders to exploit
the time based, and the feature based dependencies within the daily sensor data to estimate
the daily weight variations. The high quality of these estimates show that Apis-Prime is
capable of paying attention to the most relevant features in the dataset, and this attention
can be used to evaluate the contribution of different sensors and features. The weights of
self-attention layers of the encoders are updated during the training process, as the model
gradually learns to pay more attention to important parts of daily sensor input and vice
versa. Once the training of each system-fold is complete, we collect the self-attention
weights (for a single head) from both encoders using 100 examples from the test set. This
is repeated for all 8 folds for the systems, and then an average of these 800 attention weight

matrices per encoder is computed.

5.4.1 Time-Based Evaluation

The map of time based attention weight average from Encoderg is shown in Figure 5.7.
With a total of 48 samples per day, this 48 x 48 map provides insight into important parts
of the day with a 30 min resolution. In Western Australia, hives gain most of their weight
during summer/spring season, and the bees are very active in early parts of the day between
05:00 and 06:30. The foragers leave hive early in large numbers to scan the area for pollen
and nectar availability, which results in sharp variation (decrease) in the weight of the
hive. In figure 5.7, one can observe that the columns representing the sensor data collected
during the early morning hours carry significantly higher weights when compared to other

columns. The activity during early morning has a good correlation with other periods of
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Figure 5.7: Daily attention weights map (with max values scaled to 1) for the time based
self-attention Encoderp of Apis-Prime, with 48 data points per day. The higher values of
48 x 48 map during morning hours leading to 06:00 indicate that data collected at this time
carries significantly more useful information for weight estimation.

the day, as this activity sets the tone for weight variations for the entire day. One can also
observe that the foraging activity and resulting weight changes pick up in the afternoon and
are at their peak around 15:30. On the contrary, the data collected around 20:00 is given
minimum attention by the encoder. This is the time when bees have settled down in the hive
at the end of the day, and are not bringing any more pollen and nectar. The temperatures at
this time are also not that cold for bees to consume large amount of food to keep the hive
warm. The weight of hives does not show much variation during this time period, hence
the encoder pays less attention to data collected at this time. Based on these self-attention
weights, it is possible to devise a variable sampling period for the sensor system, where
the sensor data is collected at a faster rate during important periods of the day, and less
frequently otherwise. This will optimize the power consumption of the system and enable

collection of data with higher information content.

5.4.2 Feature-Based Evaluation

The weights for feature based self-attention in Figure 5.8 show that Encoder4 focuses
on exploiting very different dependencies when compared to those of Encoderg. The
top left quadrant of attention weights has significantly higher values when compared to
other quadrants. This quadrant represents features such as time of the day, information
about seasons as week number of the year, temperature features inside and outside the hive,

weather data of hive site, CO,, atmospheric pressure and some audio features of the bee
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Figure 5.8: Daily attention weights map (with max values scaled to 1) for the feature based
self-attention Encoder 4 of Apis-Prime, with 36 data features extracted at each time interval.
The lower values of 36 x 36 map for some of the audio bands and accelerometer data
indicate that these features carry significantly less useful information for weight estimation.
The details of different features are provided in Section 4.4.

buzz from inside the hive. It is interesting that the two feature encodings of week number
(sine and cosine), despite being constant throughout the day, have different attention weights
assigned to them. Also note that not all of the audio features carry high weights. The
column representing the weights for rain shows smaller values, and this is primarily because
the rain in the dataset does not appear frequently. When averaged out over a longer period,
the weights for infrequent events decrease significantly. The very last column, which is
the number of frames in the hive, also carries high weights as the size of a managed hive
is usually a good indicator of bee colony strength which greatly impacts the daily weight
variations. The vibration data from the three axes of accelerometer carries the least weights.
Detecting the vibrations caused by specific bee movements is very difficult because of the

structure of commercial beehives, and has been discussed in detail in Section 3.3.6.

5.4.3 System Optimization for the Task of Weight Estimation

For the task of beehive weight estimation, the impact of data from accelerometer and
some of the audio features needs further investigation. The attention maps indicate that
these features carry little to no information contributing towards hive weight estimates.
To validate this, another set of experiments was performed to estimate the daily weight

variations where the features with low attention weights, as observed in Figure 5.8, were
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dropped from the dataset. This included 3 features of accelerometer, and 10 features of

audio bands from Band6 to Band15. This resulted in a 36.11% reduction in the number
of features, which reduced from 36 to 23 in the optimized dataset. Other parameters
of experiment were kept exactly the same as the experiment with full set of features, as
explained in Section 5.3. After training Apis-Prime with optimized dataset, new attention
maps were generated. Figure 5.9 shows the 23 x 23 feature based self-attention map of
trained E'ncoder 4 with optimized features. One can observe a significant increase in the
overall values, and much fewer darker regions in the map. The question however remains if
Apis-Prime trained using optimized features can perform at par with model trained with

complete set of features.

To evaluate the performance of Apis-Prime trained using optimized feature set, weight
estimates were generated for all the systems using same set of parameters as in earlier
experiment. The comparison between the weight estimation results using full set of features,
and optimized features is provided in Table 5.4. From the percentage errors computed
using both sets, it can be observed that despite a reduction in the number of features from
36 to 23, the overall performance of the model in estimating the daily weight variations is
very similar. In a number of cases, optimized feature set even out performs the full feature
set. This implies that the attention weights of trained encoders can be used to fine tune the
design of the sensor system. Completely dropping the accelerometer data did not impact
the quality of the weight estimations. This means that the system cost can be reduced by
not including the accelerometer in the design. The power consumed in the acquisition and
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Figure 5.9: The attention weights map (with max values scaled to 1) of Encoder 4 after
reduction of features for Apis-Prime. With a total of 23 important features, the 23 x 23
map shows much higher weight values for dependencies between different sensor features
in the dataset. The quantitative results using reduced features are provided in Table 5.4.
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Table 5.4: Comparative results between Apis-Prime using all of the sensor features, and
the reduced features. Bold font indicates the better score between two feature sets.

Test Test error Absolute percentage Absolute percentage
System (grams) error (Mean) error (Variance)

All Features | Red. Features | All Features | Red. Features | All Features | Red. Features

11 24.1 24.4 0.60 0.61 0.75 0.76

13 28.5 28.7 0.65 0.64 0.80 0.79

14 13.7 13.0 0.47 0.45 0.43 0.39

15 12.1 13.0 0.62 0.63 0.91 0.91
16 16.8 16.7 0.51 0.49 0.50 0.49

17 17.0 17.8 0.48 0.49 0.42 0.47

18 26.9 26.6 0.60 0.59 0.70 0.69

19 18.8 194 0.47 0.47 0.46 0.47
Average 19.7 19.9 0.55 0.55 0.62 0.62
Std. Dev. 6.29 6.19 0.08 0.08 0.20 0.19

processing of the accelerometer data can also be saved. By dropping multiple features
from audio data, the data transmission bandwidth and costs can be saved, as well as the
processing power consumed in extraction of these features can be reduced. With a reduction
of 13 features of size 2 bytes each, the data to be transmitted in each cycle will also reduce
from 91 bytes to 65 bytes.

For remote deployment of beehive monitoring system, the reduction in system cost,
power consumption, and data transmission bandwidth are considerable gains. This is only
made possible with the use of self-attention encoders. The optimization carried out in
this study is very specific to the task of beehive weight estimation. Similar optimizations
can be performed for other tasks, where another set of sensors and features may come
out as the best choice. For a beehive monitoring system designed for multiple tasks, self-
attention encoders can help identify a superset of sensors contributing towards different
tasks. Whereas for a monitoring system designed for a very specific task, self-attention
encoders can be used to identify the minimal sensors, which will minimize the cost and
maximize the performance of beehive monitoring systems.

One of the problems identified using attention maps is the low contribution of accelerom-
eters in hive weight estimation. Theoretically, the vibrations inside the hive should contain
the information related to honeybee foraging activity, which is an important parameter for
hive weight change. However such information is not available in collected accelerome-
ter data either due to poor placement and connection of accelerometer, or because of its
low resolution. Problems with detecting these vibrations have been discussed in detail in
Section 3.3.6. The low contribution from accelerometers requires further investigation.
In the final stages of this study, an improved sensor system was designed and developed
to overcome the problems identified during the system deployments for data collection.
The new compact dimensions of the sensor board allows for better, more stable clamping
onto the hive frame, and increase the chances of detecting the weak vibrations generated

by honeybee waggle dance using an accelerometer.
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A: LoRa Antenna F: Sensors for Temperature, Humidity, Pressure, CO2, Accelerometer
B: LoRa module G: NB-loT Board connector

C: MEMS Microphone H: Charging and power circuitry

D: Micro-Controller I: Connectors for battery, solar panel, and weighing scale

E: SD Card J: NB-loT Antenna

Figure 5.10: The new sensor board developed for beehive data collection, where sensors
are better positioned to collect more hive information. All the components are soldered
directly onto a single PCB, except for the NB-IoT board.

The firmware of the new system has also been upgraded for improved feature extraction
from audio data. As discussed in Section 5.4.3, the 100 Hz sub-bands of bee buzz from
500 Hz to 1500 Hz contain significantly less information when compared to the sub-bands
below 500 Hz. Based on this evaluation, the new firmware uses smaller 50 Hz sub-bands
of audio to monitor bee buzz frequencies between 100 Hz and 850 Hz. This generates the
same amount of audio features for transmission, but focuses on a narrower audio band with
better resolution.

In the new sensor board (shown in Figure 5.10), all the sensors are better placed on
the Printed Circuit Board (PCB) to avoid the impact of charging current, and to shield
the sensors from other noises. All the components and sensors in this design are soldered
directly on a single PCB, rather than smaller sensor boards soldered to a mother PCB. The
only exception is the NB-IoT board which can easily be plugged/unplugged to the system.
However due to the time limitations in this PhD project, the improved sensor board has not

yet been tested in the beehives.

5.5 Summary

This chapter proposed Apis-Prime, a hybrid deep learning model for soft sensing and time
series forecasting to estimate the daily weight variations of beehives. The results show
an average error of 19.7 grams/frame for estimating a total of 104,160 weight points for
2,170 days in the dataset, compared to 21.05 grams/frame of earlier proposed model on
same dataset. The cumulative estimation for extended periods also shows promising results,
where the network demonstrated good tracking of actual hive weight for 120 consecutive

days. The data was collected from hive sites at a significant distance from each other for
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geographical diversity. This diversity in the training data played a significant role in the
quality of estimations, with an average mean absolute percentage error of 0.55% on the
test set. From daily estimates, 83.5% days have errors of less than 25 grams per frame at
the end of day. Furthermore, this work uses deep learning for the first time to optimize the
design of beehive monitoring systems. The attention weights of self-attention encoders
were used to gain insight into important parts of day for data collection, as well as the
features which are less useful for weight estimation. Removing the features with minimal
contribution from the dataset reduced the total number of features from 36 to 23, the size of
each data transmission from 91 bytes to 65 bytes, while providing equally good results for
weight estimation. This validates the additional usefulness of self-attention encoders for
feature selection. These results demonstrate that fit for purpose, robust weight estimations
for beehives can be achieved in real-world setting using low cost sensor systems and deep
learning models. This study shows the potential of deep learning for improving the design
of any hardware system using inverse design. Systems designed for specific tasks can be
redesigned/optimized after proper evaluation using deep learning to identify the strengths

and weaknesses.
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Chapter 6
Conclusion

This thesis aimed to answer three questions related to the design of beehive monitoring
systems. The first question was about the selection of appropriate sensors for the design of
a low power and long range beehive monitoring system. This work examined the sensors
used in beehives and analysed the monitoring systems proposed during the last ten years.
Different sensors were evaluated for their relevance, hive deployment feasibility and the
most appropriate sensors for remote hive monitoring were identified. This included sensors
for temperature, humidity, atmospheric pressure, acoustics, vibration, carbon dioxide and
weighing scales. The analysis of monitoring systems in literature facilitated the design and
development of a Beehive Data Acquisition System (BeeDAS). A total of eight systems were
deployed in beehives to thoroughly evaluate the data communication, power consumption
and beehive feasibility of the designed system. Test deployments using NB-IoT for long-
range communication were successful in the areas with no 4G coverage, and the solar power
was adequate to keep the system operational for months. These traits of the system validate
the selection of sensors, feature extraction processes, and the overall design.

Another contribution of this work is the collection of a diverse, high resolution bee-
hive sensor dataset through deployment of BeeDAS systems in hives located at different
geographical sites, and in varying environmental conditions. The collected dataset was
first tested for its effectiveness using random forests to estimate the daily weight change
of a hive. Daily weight change of a hive is a result of multiple complex factors ranging
from bee activity inside the hive, to weather conditions outside the hive. The results of
weight estimations demonstrate that the sensors used in BeeDAS, and the collected data
features adequately capture the bee activity inside a hive. Audio data from inside the hive
along with the external humidity and temperature were found to be specifically important

in estimating the hive weight change using random forests.
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6. CONCLUSION

A novel contribution of this work is the use of soft sensor predictions for expensive
and difficult to use components of a monitoring system. This work explored the use of
deep learning for estimating the weight variations of a beehive throughout a day. A hybrid
model for soft sensing and time-series forecasting was designed using bi-directional LSTM
encoders-decoders with temporal attention. The results on a dataset collected over 6 month
period showed good accuracy for daily weight estimations, with a Gaussian profile of daily
error histogram. This enabled cumulative estimation of hive weight over multiple weeks.
This shows that soft sensing using machine learning can significantly reduce the cost of
beehive monitoring systems by eliminating the costly beehive weighing scales from the
design.

This work also explored the use of self-attention encoders for system optimisation for
the task of beehive weight estimation using a bigger dataset collected over a 12 month
period. The results demonstrate that fit for purpose, robust weight estimations for beehives
can be achieved for all seasonal conditions using soft sensors in real-world settings. The
self-attention encoders of this model helped investigate the use of machine learning for
selection of sensors, and improving the design of monitoring systems. The attention weights
of encoders provide a detailed insight into important parts of the day for data collection.
The varying levels of attention by encoder on different times of a day help identify the parts
of the day where data carries more information. Collecting data more frequently during
early hours of the morning and in the afternoon can provide more useful information about
bee activity, while less frequent collection at other times can conserve power and data
bandwidth. These attention weights can also be used to identify sensors and features which
are less useful for a specific beehive task. A decrease in the design cost of system can be
achieved by excluding the sensors with an inadequate contribution, such as accelerometers.
This will also reduce the power consumption and the required data bandwidth, as total size
of data generated for each iteration will also reduce. For a system designed for remote
deployment, these are noteworthy improvements in the design, and made possible with the
help of machine learning. The equally good results of beehive weight estimation using
reduced features validate the usefulness of machine learning for optimizing the design of

beehive monitoring systems.

6.1 Limitations and Future Work

Performance of deep learning models largely depends upon the quality and quantity of
training data. For beehive monitoring, the pace of data collection is restricted by a number
of factors, and foremost is the natural bee activity. This natural activity cannot be sped up to
collect more data in less time. With all the seasonal variations and associated behavioural
changes of the bee colony, at least one year of data collection is required to properly train

and test deep learning models. This work used data which was collected for little over
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a year. Conditions change from year to year, and data collected over more time would
have helped train and test models for different conditions. Eight monitoring systems were
deployed in parallel for the data collection phase. Development of more systems required
more financial resources, and deployment needed more time allocation and logistic support.
Taking all this into consideration, it was decided to not increase the number of systems for
data collection.

Initial plans for the deployment of monitoring system were in a significantly larger area.
However, the travel restrictions because of COVID-19 forced a change to those plans. A
significant portion of data used in this study was collected from hives at UWA campus. This
somewhat restricted the diversity in collected data, but enabled hive access to troubleshoot
the sensor systems when needed, and the timely inspections/assessments of hives. The
hive assessment is a fairly time consuming process which was made possible with the help
of beekeepers involved in this project. One of the aims to collect these assessments was
to document varying health states of the hives, and use deep learning to classify these
states. We approached the beekeepers best known for their good management of hives to
allow us to use their hives for sensor deployments. Unfortunately for us, the extremely well
managed hives did not experience any noticeable decline in the bee health state during
sensor deployment. Thus, the data collected about hive states was heavily biased towards
healthy hives. Most of these hives were used for commercial purposes, and asking the
commercial beekeepers to deliberately force some of their bee colonies to become weak
was not an option. Weak colonies are susceptible to bee diseases, which can spread to other
colonies and put the whole business at risk.

For work in the near future, our preference would be to deploy multiple units of BeeDAS
in different states of Australia to collect a much bigger and diverse beehive sensor dataset.
Given the huge size, seasonal variations, weather conditions and the floral diversity within
Australia, this dataset will be a very good test of the capabilities of deep learning models
that have been developed for beehive weight estimation. Based on the results, the deep
learning models can be modified to generate even better estimations. A single model
capable of generating accurate estimates for beehive weight, regardless of the location of
hive will be an ideal outcome. An alternate approach would be to train different models on
beehive data collected from different geographic locations/conditions. The models trained
so far have used data from beehives which did not experience certain weather conditions,
such as snowfall or sub zero temperatures. Collecting data from hives experiencing such
conditions and using it for training and testing the models will be very interesting. Also,
many different species of honeybees are used in commercial beekeeping across the world.
This study collected data from hives of European Honeybees, which are the most commonly
used species globally. However, data from hives of other honeybee species such as Asian
Honeybees and African Honeybees will also be used to train and test weight estimation

models.
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6. CONCLUSION

Beehive health monitoring is a multi-disciplinary area with huge potential for further
research and innovation. But progress in this domain requires knowledge of electronics,
communication, data science, honeybees and familiarity with standard working practices
of beekeepers. We have made headway towards acquiring the required skills, knowledge
of relevant areas, the correct tools for advancing this research. Further research will aim
to use machine learning to detect bee diseases. Based on the findings of this research,
improvements have be made in the design of the sensor system. If funding is available to
carry on this work, deployment of these improved systems will be carried out in carefully
managed sick and healthy hives to collect a balanced beehive assessment dataset, and
multiple beekeepers throughout Australia will be engaged to collect the beehive health
assessments in a systematic manner. The sensor data and health assessments will be used
to train deep learning models. These models once deployed will not only inform the
beekeeper about the current health status of bees, but also predict the future vulnerability
of the beehives towards specific diseases. This will change the role of beehive health
monitoring systems from a tool which minimises the loss of beekeepers to one which
prevents it.

The design of beehive monitoring systems will see rapid improvements in the future.
Integrated Circuits (ICs) with multiple sensors, microprocessor and data transmitter on
a single chip will result in tiny and cost effective solutions. These ICs will not only be
integral part of each hive, but will be present in each and every frame of a hive to assist
with a wide range of problems. The applications of the future systems will not just be
limited to beehive health monitoring, but also for monitoring the type and quality of nectar
and pollen, extent of pollination, honey extraction process, and traceability of honey from
the source to the end consumer.

In a time when plans are in place to colonize Mars and to develop self-sustaining human
settlements on the Red Planet, beehive monitoring systems have another crucial role to
play. Progress cannot be made on the front of cultivating land on Mars for agriculture
without suitable pollinators. Honeybees being the biggest pollinator on Earth, are also a top
contender for this job on another planet. Selective breeding and genetic modifications will
be required to create a bee specie that can survive on Mars. Such a landmark can only be
achieved with thorough testing, and that is where beehive monitoring systems have a very
important role to play. Monitoring systems can help evaluate the performance of honeybees
in Mars like artificial environments created on Earth. They can be used to find the very
extremes of conditions where different modified species of bees can survive. Monitoring
systems will also evolve during this process, and a time will come when both the bees and
the monitoring systems will be able to serve the basic physiological needs of humans on

another planet.
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Appendix

This appendix contains some additional details about the bee hives, bee activity, and the
setups that have been used to measure the relevant parameters. All the contents of this
appendix link to chapter 2 of this thesis, which provides a background on beehive sensors

and monitoring systems.

A Hive Thermoregulation

Initial studies of temperature in a beehive were conducted in early 20" century [145].
The suitable temperature range in which honeybees can breed successfully is significantly
smaller than their survivable temperature range. It is only during the summer when the
queen bee lays eggs in the brood cells in large numbers. These eggs become capped
brood after eight days. Capped brood is vulnerable to changes in hive temperature because
it requires temperatures between 34°C and 36°C to mature properly into adult bees. A
variation of more than a few degrees can kill or debilitate the brood [146]. If the temperature
is below 34°C, hive bees form clusters over capped brood, consume honey and metabolise
rapidly to generate heat with their flight muscles [28]. If the temperature inside hive exceeds
36°C, the honeybees use the fanning activity to bring the hive temperature down to an
appropriate level [109] and foragers bring extra water in the hive to be passed around and
reduce the temperature.

For adequate thermoregulation, studies suggest that healthy colonies require one hive
bee for every two capped brood cells. A hive which can regulate its temperature effectively
indicates a healthy and proportionate bee population [147]. On the other hand, weak hives
with poor thermoregulation show decreased cognitive ability, weaker flight muscles and
vulnerability to parasites [28]. This shows the importance of measuring the temperature of
hive in assessing not only the current health, but also the future health of the bees. Back to

temperature in Section 2.1.1.

B Hive Weight

The weight of a healthy hive goes through a cycle of increase and decrease on a typical

foraging day. The total variation in the hive weight depends on the size of colony, number
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of forager bees, amount of floral resources available in the area and relative humidity. In
suitable environmental conditions, foragers leave the hive early morning in large numbers
in search of pollen and nectar. This results in a sharp decrease in the weight of the hive.
The number of foragers in a hive depends on many factors, but usually account for one
third of total bees in the hive. Thus, the early morning decrease in the weight can be used
to roughly estimate the total number of bees in the hive. When the early foragers start to
return to the hive with pollen and nectar, the weight of the hive increases [148, 149]. If
forager bees continue to find good flowering resources, the net weight of hive continues to
increase [32].

There are many factors which contribute towards the loss of hive weight. Nectar stored
in the hives loses its water content because of evaporation, which results in reduction of
the weight of the honey in the hive. The bees and brood inside the hive consume food,
convert it into energy, further reducing the weight of the hive. Factors such as weak bee
colonies, winter season, non-availability of resources to forage upon also result in the hive
losing weight. A swarming event, when a portion of bees in the colony leave the hive
with the (new) queen to find a new location for the hive, results in a sharp decrease in the
weight of the hive [32]. This shows that the patterns of weight change carry very important
information about the health and activity of the bees and status of the hive. A measuring
resolution of a few grams can provide information about minor changes in the weight of the
hive. From a honey production point of view, beekeepers use the weight related information
to check the honey flow and to decide if they should move the hives to a new location with
more flowering resources or keep the hives at their current location. Back to weight in
Section 2.1.2.

C Hive Humidity

Humidity levels rise in the hive when bees bring in fresh nectar. Nectar is passed from bee
to bee to reduce its high water content to around 17 - 21% [150, 151]. This nectar is then
stored in a cell and because of evaporation, the water content is further reduced before it
is capped by bees. Good quality honey has water contents of around 8% as honey with
excessive water cannot be preserved for longer periods of time [152]. High humidity in a
hive slows down the process of evaporation, and increases the risk of mould during winter.
Honeybees use fanning [62] at the hive entrance to ventilate the air in order to keep the
humidity and temperature at a reasonable level. Healthy colonies are good at regulating the
micro-climate inside the hive, so humidity levels are also expected to be an indicator of hive
health. However bees are able to regulate temperature much more effectively compared to
humidity. The humidity levels at different locations inside the hive also vary, depending
upon how effectively the bees are managing the ventilation of the hive. Honeybees maintain

different humidity levels in the brood area and around honey frames [42]. The former
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requires higher humidity levels whereas the later needs lower levels of relative humidity to

facilitate evaporation from nectar. Back to humidity in Section 2.1.4.

D Hive Acoustics

One of the earliest sound analyser for bees was ‘Apidictor’ [153], whose manufacturers
claimed that it could detect swarming, acceptance and failure of the queen, and health of
the bee colonies. However these claims were not verified by the wider community. The
electronics involved in audio processing is much more sophisticated than that of temperature
and weight. With the advancement of electronics, the work in this area gained momentum.
Another study on audio signal acquisition and processing of beehive sounds was published
by Dietlein et al. [154]. This study focused on the amplitude and duration of audio signals
during different seasons and on identifying the major frequencies which are generated by
honeybees. Bioacoustics has gained a lot of popularity recently and a focus of it has been
on honeybees. Major work in this area [44, 155, 156] is primarily focused on using the
acoustics for early detection of honeybee swarming. Swarming is a loss for the beekeeper,
so prediction and early detection of swarming is a key priority and acoustics has shown a

lot of promise in this area. Back to acoustics in Section 2.1.5.

E Hive Gas Composition

An initial study to understand the composition of gases inside the hive was conducted in
1921 [157]. In this study, the air from the brood chamber was extracted and passed through
external detectors to find the O, and CO, levels inside the hive. Similar experiments were
conducted by other scientists [64, 63, 65] in later years and all of them used the same method
of extracting air from the beehive and then using external detectors to study the composition.
This methodology was driven by two major factors. First, the size of equipment was too
large to fit inside a hive, so gases were extracted after regular intervals and tested using the
equipment outside. Second, there is a requirement of smooth flow of gases through/across
the gas sensors for them to function properly. Such flow is not available inside the hive as

air circulation in the hive is largely controlled by bees. Back to gas content in Section 2.1.8.

F Honeybee Waggle Dance

Vibrations generated by the waggle dance, the 15 Hz abdomen waggle and the 250 Hz thorax
vibration are known for their relation with foraging activity [158, 57]. Using this dance,
the forager bees inform the other foragers about relative position of flowering resources

in the area with respect to position of the sun. This saves the forager bees a lot of time
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and effort as typical forager can travel up to 3 km from hive in search of pollen and nectar.
This communication allows the foragers to make the most of the closest available foraging
resources or the most favourite ones. Visits to a specific type of plant by foragers in a colony
results in the collection of mono-floral honey. Other than these waggle dance vibrations,
bees generate vibrations up to 1 kHz, but it is not known if this entire band carries useful

information. Back to accelerometer in Section 2.1.7.

G Limitations of Thermal Imaging

Using low resolution thermal imaging, it is neither possible to estimate the number of bees,
nor can anything be inferred about the presence of brood, stocks of food or presence of
any disease in the colony. The amount of thermal radiation coming out from each hive
is also dependent upon the thickness of hive wall, material used such as wood or plastic,
reflectiveness of paint which varies with type and age, and the amount of moisture in the
wood in case of a wooden hive. With so many variables adding to the noise of thermal
images, it is very difficult to use thermal imaging as a standard way to estimate the strength
of bee colony. Two colonies with similar strengths can have two very different thermal
radiation patterns outside the hive depending upon the construction, composition and

condition of the hive itself. Back to thermal imaging in Section 2.1.10.

H Use of RFID in Honeybee Research

A major use of this technology has been in identifying the impact of pesticides and insecti-
cides on honeybees. Researchers use the RFID tags on bees so that the bees can be easily
identified, and then feed with controlled dosages of sublethal substances, subsequently
monitoring their flight activity over a period of time. These experiments allow researchers
to determine the acute effects of sublethal doses of insecticides/pesticides [159]. Mating
behaviour of honeybee queen has also been studied in detail using RFID. A virgin queen
goes for mating flights, also known as Nuptial Flights only during a span of several days in
her early life, mostly a few weeks after hatching from the cell [160]. During these flights,
the queen mates with several drones and stores the sperms in her body. Once these nuptial
flights are complete, the queen stays in her hive for rest of her life and lays eggs for upto 5
years. RFID has also been used in studies related to these complex nuptial flights [161].

Back to radio frequency identification in Section 2.1.12.
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I Details of Beehive Monitoring Systems in Literature

This appendix will provide some details about the short listed beehive monitoring systems

from literature.

I.1 Parameters/Sensors Used

Howard et al. [37] have performed the most comprehensive study of relevant parameters
among the monitoring systems shortlisted for this review. They have used two very high
relevance parameters i.e. temperature and weight, along with three high relevance parame-
ters including humidity, acoustics and external imaging. Authors also measure gas contents
in their experimental setup which is a parameter with medium relevance. Tashakkori et
al. [82] propose a complete end-to-end beehive monitoring system ‘Beemon’. This IoT
based system comprises seven components including hardware, software, research tool for
processing video and image data, research tool for audio data, web tool for streaming the
live video from hive, web tool for data analytics/visualisation, and dashboards to be used
as interface for beekeepers. However, the authors only mention the weighing scales in their
work and do not provide any details of scale design, construction, usage or results.

Murphy et al. in both of their studies [26, 59] have used the same setup of sensors inside
the hive. These studies however aimed to achieve different goals. The objective of Murphy
et al. [26] was the testing of a wireless sensor network for beehive health monitoring with
a focus on communication and power consumption of different types of sensors. Whereas
the focus of Murphy et al. [59] was to use multiple deployments of their designed nodes
to collect beehive data and induce a decision tree for hive classification. The authors in
another study Murphy et al. [71] use a different set of sensors to investigate a low power
and self-sustainable design with the aid of energy harvesting via solar panels.

Gil-Lebrero et al. [83] made use of three parameters in their proposed design. The focus
of this design was on overall usability and scalability. The major difference between this
study and others part of this review is the deployment of three temperature and humidity
sensors in three different locations/frames of each hive.

In their work Ferrari et al. [44] and Anand et al. [85] used differernt set of parameters to
monitor the swarming activity of bees, to allow for early detection of swarming. Swarming
is a phenomenon when a part of the bee colony leaves the hive, which is a loss for the
beekeepers. Anuar et al. [84] designed an embedded electronic beehive monitoring system
along with its android application. However, the parameters were only monitored for the
honey chamber in this study.

Konig et al. [86] in his work ‘IndusBee 4.0’ designed a monitoring system where the
weight for each chamber of the hive was individually monitored. Acoustic monitoring of the
hive was performed using a MEMS microphone. Further, a Volatile Organic Compounds

(VOC) gas sensor was also added to the design to explore the in-hive detection of infestation
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and illness.

Kulyukin et al. [87] developed a custom monitoring system (BeePi), capable of recording
audio, image and video data from the hives. The weather data was also recorded, and
analyzed for correlation with bee activity. Later chapters of this thesis will also evaluate
the importance of using weather data in beehive monitoring. This is one of the few works
where the collected data has been made public.

The remaining two studies employed a single parameter each for beehive monitoring.
Kridi et al. [88] used only the temperature sensor with focus on a light weight system. Chen
et al. [35] used infrared imaging in their monitoring system. This work employed image
processing to monitor the activity of forager bees, and is quite different from other works

included in this review.

I.2 Design and Methodology

Howard et al. [37] used standard beehives in an apiary for their experimentation, with
the aim of causing minimum interference to the normal bee activity. They used a total
of 4 hives for their experiments, all placed within 30 meters of each other. The authors
used commercially available Arnia monitoring systems, alongside their own designed
system to read temperature, humidity and collect additional data of acoustics, video, gas
concentrations, internal and external light levels, and the weight of hive. Arnia system
does not facilitate the collection of video or audio data, and the Arnia weighing scales
with a price tag of 699 GBP are quite expensive. However the authors used a single Arnia
weight scale for one of the hives in the experiment. By reading some of the parameters
twice, from Arnia and from their own design, they were able to validate the functioning and
accuracy of their own system. Apart from acoustics, each of the deployed sensors read a
value every minute which included 12 seconds of video during favourable light conditions.
The microphone however was used to record 12 minutes of continuous audio every 20
minutes. The authors were able to collect the sensor data from hives effectively for several
months. However the processing of audio and video data was not part of this study.
Tashakkori et al. [82] developed their own system with an aim of achieving cost-
effectiveness, efficiency and reliability. The system used a Raspberry Pi 4 with a Raspberry
camera interface and an SD card that was utilized for local storage. The camera was used to
capture still images at a resolution of 3280 x 2464 pixels, and the video at 1080p. A USB
microphone was used to record the audio data. An AM2302 sensor capable of recording
humidity and temperature was connected to Raspberry Pi using the GP1Os. The Raspberry
Pi ran an application that recorded the audio and video data, temporarily stored the data
until it was uploaded to the server for long term storage and analysis. The plug and play
system allowed for easy replacement of components. A client could easily relay commands

from a terminal connected via a Secure Shell (SSH) connection to the server allowing
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control over the system.

Murphy et al. [26] targeted the deployment of a WSN for bee health monitoring,
with the aim of being non invasive, easy for beekeeper, robust in hive, low energy and
remote deployable. The Authors used Libelium Waspmote [162] as their basic platform
for development of nodes. Two types of nodes were developed, one for generic hive
measurements and other for gas detection. Both nodes were deployed on the top lid of a
single hive, and analysed the air/gases flowing out of hive. Sensors were not exposed to
bees directly, and a mesh excluder was used between the sensors and the bee compartment.
Time stamped samples were collected every 4 hours, making a total of 6 samples per day.
A third node was used as base station to collect the data from hive nodes. Authors have
presented data collected during first two weeks of July. The collected data shows high
temperature and humidity fluctuations in early July, despite this being a brood rearing
period in the region of experimentation. Authors did not provide any explanation for these

fluctuations.

Edwards et al. [59] used the same setup discussed in Murphy et al. [26] with some
modifications in gas data collection and changed the sampling time to 8 hours (3 samples
per 24 hours) instead of 4 hours to make battery last longer. Gas sensors have relatively
high power consumption and reducing the sampling period of this node provided significant
gains. Data was collected for 14 days with this setup and results again showed a lot of
variations in the readings of temperature and humidity, which is not a norm for a healthy
hive. The measurements from the lid of a hive were a non-linear average of parameters
from inside, and outside the hive such as temperature, humidity. However, data gathered
using this setup was used by the authors to classify ten different states of the hive. These
ten states were divided into two groups, one which required a response from beekeeper
and one which did not. Parameters used by authors in the decision tree classification were
humidity, temperature, carbon dioxide and rain. This required the classification system to
have access to meteorological data of hive location for accurate classification. Results from
the experiments on single hive showed an accuracy of around 95%. However for a generic

solution, a much bigger dataset from multiple hives is required.

Murphy et al.in their study [71] used a different set of parameters. Waspmote [162]
was used to interface an accelerometer, microphone, infrared and thermal imaging cameras.
Infrared Light Emitting Diodes (IR LEDs) were used with IR camera to illuminate the
hive. As the IR spectrum is not visible to bees, authors claim that this setup is not invasive.
However, the question still remains about the heat emitted by these IR LEDs, which can
impact the thermoregulation of the hive if used in large numbers. A long term presence of
IR camera inside the hive with bees may result in bees covering it with propolis, which
will block the vision. The IR camera in this setup was only tested in an empty hive, and
the practicality of proposed design can only be evaluated when tested with bees. Thermal

images of 80 x 60 pixel resolution were also acquired using an external setup, where the
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authors did not provide any information on how the system will process this thermal data.
The images, both thermal and IR, were acquired 5 times per day and the waspmote was used
to turn off the Pis after each capture. Similarly, waspmote was used to boot the Pis before the
next image capture, which reduced they duty cycle and maximized the energy performance.
For acoustics, low sampling rates of 100 Hz were used by authors to minimize data rate
and processing. Only the peak values of acquired audio samples of bee noise were used to
alert the beekeeper if they crossed a certain threshold. This low sampling rate minimised
the power consumption, but made it impossible to extract any frequency information from
bee buzz (100 - 300 Hz). In addition to acoustics and imaging, authors used accelerometer
to alert the beekeeper using a text message in case a significant movement was detected by

the accelerometer.

Gil-Lebrero et al. [83] also used a Libelium Waspmote [162] with SHT15 sensors
capable of measuring temperature and humidity, and a weighing scale. For each hive,
authors deployed three SHT15 sensors in different parts of hive and the sensors were
protected from propolisation by enclosing them in perforated queen expedition cages. Data
collected from each sensor node was directly communicated to an embedded industrial
computer, with XBee nodes connected to it using a star topology. They used a single 150
kg load cell for the weighing scale, with resolution set at 100g along with BR80 weight
tare indicator [163]. Data from sensors and weighing scale was recorded every 5 minutes
for 32 consecutive days, and then again during the honey flow. During the honey flow, the
weight scale did not pick up minor daily variations because of used resolution, but the
gradual increase in the weight during this period was evident. Results also showed very
stable temperature and humidity in the brood chamber with minor fluctuations for sensors
placed away from brood area. Environmental temperature and humidity variations had
very little impact on readings from the brood area, which signifies the importance of proper
placement of sensors in the hive. This designed monitoring system is being used in 20 bee
colonies, which is significantly more than the number of hives used by other systems in
this study.

Ferrari et al. [44] used temperature, humidity and acoustics to monitor the swarming
activity of bees. This is one of the most significant works carried out for early detection
of swarming. Three hives were monitored for 270 hours continuously, without removing
the newborn queens from the hives. This allowed for multiple events of swarming and
collection of event related sensor data. Audio data was sampled at 2 kHz with 16 bit
resolution. The temperature and relative humidity sensors were placed in between the hive
frames using HOBO dataloggers which recorded values every 2.5 minutes, and microphones
were placed above the honey frames, continuously recording the sounds from inside the
hive. All sensors were covered by a special net to protect against the propolisation from
the bees. All the signal processing was done using Matlab including filtering to get rid of

the noise. The authors labeled the audio data manually with the aid of spectrogram and
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used the timestamps to map audio data with humidity and temperature readings. A total of
9 swarming events occurred during this study and they were detected from sound as well
as from the visual analysis of the observers. All the swarming events were recorded during
day times and in the hottest hours. The total duration of a swarm, from the start of bees
excitement till they leave the hive, ranged between 13 and 56 minutes. Bee noise generated
during the swarming had a much higher Power Spectral Density (PS) when compared with
the standard bee buzz, specially in the S00Hz to 1000Hz band. A drop in internal hive
temperature was also observed just before the swarming events. Sound and temperature

data were found to have more correlation with the swarming activity compared to humidity.

Anuar et al. [84] designed a system based on NodeMCU, and used a built-in low-power
WiFi module for communication. A single hive was monitored for 36 hours and a total
of 12,200 data points were collected with a 7 second interval. To estimate the number of
forager bees going in and out of the hive, two pairs of infrared transmitters and receivers
were used in a funnel to provide a single channel for forager movement. The funnel was
fabricated using a 3-D printer and was installed at the main hive entrance/exit. However,
the authors only tested the system at an unconventional hive, where brood chamber was

cylindrical in shape.

Anand et al. [85] designed a beehive monitoring system to function in the practical
environment and to be user friendly and compact. A major focus of this work was on
using the audio from inside the hive to detect pre-swarming of bees. The Analog to Digital
Converter (ADC) of Arduino UNO was used to sample the audio data at 38 kHz. A 256
point Fast Hartley Transform (FHT) was implemented on the sensor node to extract audio
frequency components. However, the authors only shared the frequency analysis after

processing in Matlab. The designed system was tested on a single hive.

Konig et al. [86] discussed the importance of beehive monitoring system and its evo-
lution over time, with focus on Varroa mite infestation and hive state classification using
acoustic data. Primary goal of this work was to achieve a simple, affordable and reliable
hive keepers assistance system for varroa monitoring in the beehives with a sufficient
screening coverage for event-driven treatment decisions. The designed system comprised
of Raspberry Pi Zero, two temperature and moisture sensors (DHT22/11) at the top and
the bottom of hive chamber, HX711 board for hive weight scale reading and an 12S MEMS
microphone. The audio processing was performed offline on a remote computer, requiring
all audio data to be captured and stored. Also, these tests were performed on a very limited
data set acquired from a single mini bee colony. Further, a Volatile Organic Compounds
(VOC) gas sensor was added to the design to explore the in-hive detection of infestation
and illness. The very basic version of this system without scales and gas sensor cost less

than US$ 30 for components.

Kulyukin et al. [87] shared the dataset they collected using a custom monitoring system.

This data was collected from 2014 onwards, and authors have made an excellent effort
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in explaining the experimental setup, conditions, design limitations, power issues and
data labelling. The designed system is based on raspberry Pi, and different models of Pi
were used over different periods of time. The other setup however remained the same and
consisted of a pi T-Cobbler, a breadboard, a waterproof temperature sensor, a pi camera, a
ChronoDot clock, and a Neewer 3.5 mm mini lapel microphone.

Kridi et al. [88] developed a prototype for data collection based on the Arduino platform.
The temperature sensors used were LM-35 which are very cost effective, and each sensor
was calibrated by authors for consistent readings. They deployed two hives and recorded

the temperatures inside for 40 consecutive days.

Chen et al. [35] in their study used an infrared CCD camera and infrared light source to
monitor the passageway of bees going in and out of the hive. The setup forced the bees to use
the confined passageways under camera observation. In order to help individually identify
each forager bee, circular character tags were attached to the dorsum of the bees, where each
tag had a black positioning dot to identify the orientation of the tag. The experiment was
designed to record the timings of entry and exit for each bee, which provided information
about the foraging habits of bees. The experiment lasted 15 days and by the end, the number
of tagged honeybees going in and out had gone to zero. This validates the lifespan of
foraging honeybee to be about two weeks. Authors observed that honeybees started the
trips outside the hive around 05:00 AM and the activity reached its peak around 10:00 AM.
After that the foraging activity gradually decreased, reaching a minimum level at around
07:00 PM. These findings however are very specific to the region and depend upon the
sunrise and sunset times as well as the season. Almost half of the honeybees in this study
spent less than 3 minutes outside the hive per trip, which indicates that flowering resources
were located near by. Authors also noticed that for multiple trips in a single day, honeybees

spent a minimum total of around 1 hour and a maximum total of 7 hours outside the hive.

1.3 Data Storage/Communication

Howard et al. [37] designed their system with a WiFi hotspot using a raspberry Pi for
communication. All other Pi based sensor nodes were connected to this hotspot. However
authors did not use this communication link for sensor data communication for unspecified
reasons. Instead, they used onboard 32 GB SD cards to store small amounts of sensor data
and an external 60 GB hard disk drive for large audio and video data. This data had to be
manually copied from external HDD every 3-4 days.

Tashakkori et al. [82] used a class 10 SD card on raspberry Pi to temporarily store
the high bandwidth audio and video data. The sensor data from low bandwidth sensors
was transmitted using Message Queuing Telemetry Transport (MQTT) [89] protocol to
the dashboard using a wired connection. The system used File Transfer Protocol (FTP)

to transmit the high bandwidth audio and video data over same wired connection. This
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allowed a near real-time collection of data from the hives.

Murphy et al. in their works [26, 59] also used SD card for the storage of sensor data.
They utilized low power XBee Series 2 radio for communication between two local WSN
nodes and the third base station node which acted as ‘Xbee to 3G radio bridge’ for long
distance communication. The base station node combined the data from all sensor nodes

into a single ‘csv’ file and uploaded it to server via File Transfer Protocol (FTP).

In another study, Murphy et al. [71] designed the system with a GSM/GPRS module
for data communication. This module had an advantage of ultra-low power operation and
could be used for FTP upload/download. GSM/GPRS networking was selected in this
study to allow the remote deployments of beehives using cellular network. Data collected
using sensors was stored on SD card, and the proposed mechanism of data transfer using
FTP was not tested by authors. Since the imaging equipment collected only 5 images per

day, this generated small amounts of data, suitable for storage on SD cards.

Gil-Lebrero et al. [83] used Libelium’s ‘XBee USB-Serial gateway’ module as the
coordinator of the network, which used IEEE 802.15.4 standard to communicate with
the deployed nodes. The SCADA system was used to broadcast a data request, and then
collected data from all the nodes in a synchronized manner. The SCADA on gateway server
used SQL database to store the sensor data. Local computer was connected to internet
using ethernet connectivity and a periodic backup of the local database on each node was
also carried out in the database server. This enabled the beekeepers to access data from
anywhere.

Work of Ferrari et al. [44] was focused on detecting the swarming activity instead of
coming up with a complete monitoring system. They used wired communication to collect
the analog acoustic data and used a sound card to digitize and store it on a computer hard
disk drive. Authors used in-hive data loggers for recording the humidity and temperature
sensor data along with its time stamps and retrieved it after the experiment to correlate
with audio recordings. Chen et al. [35] also used a simple wired connection to transfer
CCD camera data to the computer where it was processed to extract the information about
foraging activity.

The temperature monitoring system designed by Kridi et al. [88] sent the initial 4 hourly
readings of temperature inside the hive to base station using a XBee module operating at
900 MHz. Authors used a high gain antenna to establish a wireless link between nodes
in apiary and the base station at a distance of 210 meters. The specifications of XBee
module claimed much bigger coverage area but authors found that not to be true. Besides
sending the temperature readings to base, the designed system also used these readings to
identify the closest pattern of acceptable microclimate. Once such pattern was identified,
the monitoring system transmitted the ID of selected pattern and afterwards did not transmit
any more hourly temperature readings as long as the hive temperature readings were within

1°C of selected pattern. If the hive temperature was found to be out of desirable range, the
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temperature was sent to the base station to indicate that the hive temperature has deviated
from the selected pattern. The monitoring system then also attempted to fit a new pattern to
the new temperature readings and if found, same process described above was repeated. If
the monitoring system did not find any suitable pattern, it continued to send the temperatures
to the base station, and after three or more consecutive failed attempts of finding a pattern,
the system started generated an overheating alert as well. As only critical information was
transmitted to the base station, this allowed for reduced communication from hive and
made nodes more power efficient.

Anuar et al. [84] did not store the data locally on their system. All data were recorded
and transferred to a Google Firebase real-time database using the onboard WiFi module.
The authors also designed an Andriod application which fetches all the information from
the database and represents it as graphs. Anand et al. [85] did not share any details about
local storage capabilities of their system. However they analyzed the collected audio data
from beehive using Matlab. It is not clear if the WiFi module of the system was used
to transmit raw audio data to the cloud server or just the audio frequency components
extracted through FHT. The cloud server used was BLYNK, which is an open source IOT
cloud server. Konig et al. [86] also did not share any details about the communication or
data storage capabilities of their system. However raspberry Pi Zero has support for both
WiFi and an SD card.

Ferrari et al. [44] and Chen et al. [35] used a wired connection to log the data on
a computer at the hive site. Their setups were not designed to test the communication
or storage of hive data. Kulyukin et al. [87] did not design their system to handle data
communication. The purpose of this design was to collect ample amounts of data for
analysis. The total data collected by these systems over the years exceeds 1 TB (Tera Bytes),

and USB storage devices were used with Raspberry Pis to store and collect this data.

1.4 Remote Deployability

Howard et al. [37] used SD cards and external Hard Disk Drives for data collection nodes
based on raspberry Pi. This was not a user-friendly approach and was also invasive in
nature. It required the beekeeper/researchers to open the hive every 2-3 days to collect
data, which is significantly less than the recommended duration of two weeks. Also, the
WiFi network between nodes was not used effectively to transmit the data. The backbone
of connectivity for this study was a university network which cannot be used for remote
deployments. Authors also used external power sources for their nodes. The hardware setup
with frequent sampling proved so power hungry that use of batteries was found inadequate.
This deployment strategy can work for data collection for research purposes for a limited

period, but would fail to work for remote monitoring.

Tashakkori et al. [82] did not design their system for remote deployability. Since
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the system was entirely dependent on Ethernet (wired) connectivity for communication,
the system was only deployed and tested on hives in urban areas where wired internet
connections were available. Also, the systems based on raspberry Pi consume a lot of
power. The collection of video data, and its transmission is also a power hungry process.

The system was powered using a power line from a nearby building.

Murphy et al. [26] attempted to make adequate arrangements for remote deployability.
Authors used wireless communication to relay the sensor data to the user, and included solar
panels in their design for energy harvesting. The sensor nodes used 6.5V at 205mA solar
panels with a 6600 mAh battery whereas the base station featured a sightly bigger solar
panel of 7V at 500mA rating. The base station used XBee for inter node communication
and 3G radio communication to upload node’s data to server using FTP. The bigger solar
panel of base station proved adequate for this operation, however the capacity of solar panel
used for gas sensor nodes was not enough. This battery drained to around 20% within two
weeks. Also, the base node and sensor nodes were deployed very close to each other, and
the impact of increasing this distance on power usage by XBee radio was not investigated.
In their next study, Edwards et al. [59] used the same setup but improved the deployability
by reducing the number of samples of gas node from 6 to 3 per day. This provided a
significant improvement in battery performance as the installed solar panel was able to
replenish this smaller battery drain. This made their setup remotely deployable, subject to

the availability of 3G coverage in the area.

Murphy et al. in another work [71] had the major objective of achieving system
autonomy by being energy neutral. They implemented energy harvesting through solar
panels and stored energy in a 1000 mAh battery, which would last several days even without
sunshine. These nodes compared to their previous setup were much more energy efficient
and the total energy requirement by each node in the worst case scenario could be met
using the solar panel harvesting. However, this setup generated a lot of image data, and
authors did not test the working of 3G network to transmit this data to server. SD cards
were used to store this data, which required manual collection, not a desirable aspect for

remote deployability.

Gil-Lebrero et al. [83] used batteries and external power supply for their nodes. The
internode communication employed using XBee is a reasonable solution for remote de-
ployment but the local server used in this setup was connected to internet using Ethernet
connectivity. This system was not tested with wireless connectivity between local server

and the cloud server which is essential for remote deployment.

Kridi et al. [88] developed a prototype which used SD card to record all the readings,
and only the essential readings were communicated wirelessly to the base station. This
significantly improved the battery life. The data from sensors was accessible using internet.

These features add to the remote deployability of this system.

Anuar et al. [84] also based their system on two 1300 mAh lithium batteries and a
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charger module connected to AC power line. WiFi was used for communication of data
for this system. The power and WiFi requirements limit the remote deployability options
of this system. Anand et al. [85] did not provide any details about how the system was
powered. And the use of WiFi significantly impacts remote deployability. [44, 35, 86] did

not design their system for remote deployment.

I.5 Cost

Anand et al. [85], Anuar et al. [84], Ferrari et al. [44], and Chen et al. [35] did not provide
any information about the cost of equipments used. The focus of their studies was on
the development of algorithms and techniques rather than a complete monitoring system.
Kulyukin et al. [87] designed their system to be low cost by using off the self sensors and

components, but did not provide an estimated cost for their system.

1.6 Data Processing

Konig et al. [86] used the vibration and sounds inside the hive for classification of different

hive states, which are:

Okay/Calm or Normal State

* Agitated/Disturbed

* Knocking/Pecking at hive

* Scratching at hive

* Swarm mood

* Missing Queen

* Looting (robbing of honey by bees from other hives)

Other studies included in this review [37, 83, 44, 84, 85] did not focus on decision
making aspects of the monitoring systems. However authors expressed their desire to use

the experimental data for development of machine learning algorithms in the future.
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