
DeepBees – Building and Scaling Convolutional Neuronal Nets

For Fast and Large-scale Visual Monitoring of Bee Hives

Julian Marstaller1

julian.marstaller@online.de

Frederic Tausch1,2

fredetic.tausch@apic.ai

Simon Stock1

simon.stock@kit.edu

1Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2apic.ai, Karlsruhe, Germany

Abstract

The decline of bee populations is a global trend and

a severe threat to the ecosystem as well as to pollinator-

dependent industries. Factor analysis and preventive mea-

sures are based on snapshot information. Information

about the health state of a hive is infrequently acquired and

remains labor-intensive and costly.

In this paper, we describe a system that enables near-time,

scalable, and cost-efficient monitoring of beehives using

computer vision and deep learning. The systems pipeline

consists of four major components. First, hardware at the

hive gate is capturing the in and out streams of bees. Sec-

ondly, an on-edge inference for bee localization and track-

ing of single entities. Thirdly, a cloud infrastructure for de-

vice and data management with near-time sampling from

devices. Fourthly, a cloud-hosted deep convolutional neu-

ronal net inferring entity-based health insights. This Multi-

Net architecture, which we named DeepBees, is the main

focus of this paper. We describe the development of the ar-

chitecture and the acquisition of training data. The over-

all system is currently deployed by apic.ai and monitors 49

beehives in Karlsruhe in the south of Germany.

1. Introduction

In recent years, entomologists have been observing a

global decline in the population of pollinating insects [20,

10]. This is of considerable concern since the global agri-

cultural industry is heavily dependent on pollination [11].

One rather prominent representative of the species affected

is the western honey bee (Apis mellifera). Unfortunately,

the phenomenon cannot be traced to a single root cause. Re-

cent research on honey bee population decline and colony

collapse disorder (CCD) is suggesting a multitude of influ-

encing factors [4, 12, 17, 18, 33]. Namely harmful pesti-

cides, parasites, diseases, malnutrition and intruders. Fur-

thermore urbanization [6] and intensive monoculture culti-

Figure 1: Hardware system and the proposed bee monitor-

ing process. Bees are filmed at the hive entrance. Localiza-

tion and tracking is performed on the edge. Sample streams

of individual bees are transferred to the cloud and health

data is inferred by DeepBees.

vation [14] are man-made causes. It is difficult to determine

which of those factors ultimately lead to the death of a spe-

cific colony [36]. Deeper understanding of the ecosystem

and human impact on nature is required as well as inte-

grating this information in short and long-term decision-

making. This leads to the need of a constant, low-cost

surveillance of honey bee hives with the ability to auto-

matically extract health-related insights. We developed a

scalable, energy-efficient and non-invasive solution, using

off-grid hardware with visual sensors as depicted in Fig-

ure 1. It continuously records the entrance of the beehive

and evaluates the video material. Our system is detecting

and tracking the insects on a locally running, Raspberry Pi-

based, platform. Cropped image sequences of each insect

are transferred to a cloud based computing system which

is not limited by computational and energy resources. The

system architecture hence utilizes recent advances in edge

computing [15, 28] to minimize workload and communi-

cation bandwidth costs. It also enables a flexible sampling

of sequences based on current activity at the hive entrance,

energy supply, and a general trade-off between costs and ad-

ditional value due to enlarged samples. Also, information is

processed at a large scale, from a variety of different loca-

tions within an ecosystem and made available near-time.

Our approach to offline bee tracking is based on the ap-

proach by Bozek et al. [2] who tracked honey bees on ex-

tracted honeycombs. This method is intrusive to the hives.

Our proposed system is avoiding this issue by installing the

system at the entrance of the beehive. Therefore, all bees

entering and exiting can be monitored using a low-cost cam-

era at 640× 480 pixel resolution.

The proposed devices are currently deployed by apic.ai and

collecting data from 49 beehives in and around the city of

Karlsruhe in the south of Germany.

Having built this infrastructure, we now propose an archi-

tecture of a deep convolutional MultiNet as the primary an-

alytical model to derive health-related insights.

2. Related Work

Pollinator decline is a global problem and intensively an-

alyzed in the last decade. In Germany, Hallmann et al. [10]

measured the biomass of flying insects through installed

traps for 27 years. They registered a 76.7% drop of insect

biomass, including wild bees from 1989 until 2016. Several

approaches use less invasive sensor-based systems. Wario

et al. used vision sensors to automatically detect the dance

of bees and decode it [35]. The same authors noted that rec-

ognizing individuals visually alone is nearly impossible and

equipped several bees with a marker around the head [37].

The system of Schneider et al. [27] uses RFID tags for mon-

itoring. The drawback of such approaches is the modifica-

tions to the bees or their hive, which are required for those

setups to work. Bozek et al. [2] tracked bees with CNNs on

extracted honeycombs in large numbers and in close prox-

imity to each other. They were able to detect bees through

more than 720 video frames with over 375 thousand labeled

bees. This technique enables easy and scalable monitoring

on a individual level as well as bee counting at the entrance

of the hive.

Few studies try to locate and detect pollen on images. In

June 2017 Rodriguez et al. published a small dataset dedi-

cated to classifying bees in pollen-bearing and non-pollen-

bearing bees [23]. Later on, they used the dataset to test

and evaluate several Convolutional Neural Network archi-

tectures [24]. In their approach images of bees were scaled

to resolution of 180× 300 pixels with RGB color channels.

Rodriguez et al. [22] presented a particular interesting ap-

proach for detecting the pose of a bee using CNNs. They

use GoogLeNet [31] to decode confidence maps for the

left and right antenna as well as the tongue. Pereira et al.

[19] developed a general framework for tracking the mus-

culoskeletal system of insects. In particular tracking head,

body, legs and wing positions of drosophila melanogaster.

We aim to solve multiple monitoring tasks in one network

architecture. Therefore, we want to further investigate the

feasibility of multi-task learning. Ge et al. [7] and Gebru et

al. [8] showed that it is possible to transfer domain knowl-

edge for solving a great variety of problems even if data for

a certain challenge is sparse. The general idea is to use one

common encoder with application specific decoders or clas-

sifiers. These approaches are currently adapted for several

multi-task challenges like autonomous driving [32].

3. Concept

Solving the difficulty of multiple entities in an image and

temporal consistency on the edge-device, simplifies the in-

put of the cloud-based inference. The cloud-based CNN

thus infers on single-entity images of bees. Since health

indicators are versatile, we argue that a multi-task architec-

ture is well suited to formulate learnable tasks and create

annotated data for training.

3.1. DeepBees Architecture

The architecture shares a common encoder across all

tasks as depicted in Figure 2. We name our proposal Deep-

Bees, since it creates an extensive, feature-rich latent space

representation (LSR) of bees based on a variety of tasks.

Every trainable task adds additional features to the latent

Encoder

Pose ModuleClassification Module

Decoder

Genus Module Pollen Module

Normal Pollen Drone Dead

Bee Wasp Bumble-
bee

Hornet

Representation

Confidence
Maps

1280

224

224

3

32

112

112

16

1280
7
7

32

224

224

32

224

224

3

224

224

3

224

224

pollenbg x1 x2y1 y2

b
o
x
e
s

14x14

7x7

box offsetsconfidences

1
1

grids

 245
x 5

 1225

cells
def.box.
boxes

 245
x 5

 1225

cells
def.box.
boxes

 245
x 5

 1225

cells
def.box.
boxes

conf. x1 y1
keypoints

Class confidences

Genus confidences

Latent Space
Representation

Input

1280

1
1

GAP

GAP

layer_14, layer_17

LSR

LSR

Figure 2: DeepBees, a MultiNet consisting of a shared fea-

ture extractor and modules for genus identification, pollen

detection, unsupervised learning, pose estimation and clas-

sification.

space which can also improve the decision process of other

tasks. We choose MobileNet-v2 with a width multiplier of

1.0 proposed by Sandler et al. [26] as the preferred en-

coder.1 Next, we describe the output modules and tasks.

They are restricted to tasks with available training data or

feasible effort to collect and annotate such training data.

The Genus Module distinguishes between bees, wasps,

bumblebees and hornets. This way, information about at-

tacks, raiding or theft by intruders is collected. The rele-

vant features for this classification are also useful to learn

the general concept and shape of different types of insects.

We use global average pooling (GAP) to reduce the latent

space to a feature vector and the usual transformation with a

dense layer and softmax to score probabilities for these four

classes.

The Pollen Module detects pollen objects on bees. We use

the Single-Shot-Multibox-Detector (SSD) approach pro-

posed by Liu et al. [16] for this task. We score five default

boxes for each cell on layer 14 and layer 17 of MobileNet-

v2. By creating collections of detected pollen, we can create

measures for the diversity of nutrition in the hive and ag-

gregation over quantity measures. With this module, food

shortages can be identified. We integrate a Tensorflow im-

plementation by George Sung for this module [30]. To the

best of our knowledge there exists no published work that

attempts to detect pollen on bees using object detection.

The Pose Module module predicts the location of 32 rele-

vant keypoints on the insect. Explicitly inferring the pose

is beneficial in order to identify behaviour anomalies such

as trembling after poisoning or infections. It can also be

used to monitor grooming and hygienic behavior of the

colony, since it is a defense mechanism against mites [1].

We closely follow the concept proposed by Pereira et al. for

this task [19] by regressing confidence maps.

The Classification module scores probabilities for a total of

four mutually exclusive classes. Worker bees with pollen,

worker bees without pollen, drones and dead bees. While

the pollen detection scores the box for single pollen, the

classification infers on the entity-level. This is beneficial,

since often only one pollen is visually present or is strongly

blurred, if the leg is moved. The aggregation of the in-

formation sampled from the classification module can de-

rive ratios about the population split, food availability w.r.t.

colony size, as well as mortality ratios.

We also include a Decoder for structural learning. The ar-

chitecture can hence also train the encoder on all unlabeled

images.

We aim to add further tasks such as varroa detection, classi-

fication of specific diseases and activity scoring in the future

as soon as training data is available.

1We evaluated VGG, Inception, ResNets, MobileNets and PNASNets

at various sizes. MobileNet-v2 showed the best trade-off between perfor-

mance and resource requirement. A detailed comparison goes beyond the

scope of this paper.

3.2. Datasets

One benefit of a multi-task architecture is the flexibility

to compile individual datasets for each task. It also allows

for integration of existing datasets. Figure 3 displays sam-

ples from all datasets and classes. In Table 1, |X| summa-

rizes the number of frames compiled in the dataset. |Xtrain|
and |Xtest| describe the training and testing sizes respec-

tively.2 We extended the VIA-Annotator by the Visual Ge-

2When further extended, we will include a validation set as well.

(a) Bees [13]

(b) Bumblebees [13]

(c) Wasps [13]

(d) Hornets [13]

(e) Drones

(f) Dead bees

(g) Bees with pollen

Figure 3: Exemplary images from all datasets.

ometry Group (VGG) [5] with a NodeJS-based back-end to

interface with Google Storage for the annotation process.

To reduce workload, we utilize sequence-wise aggregations

of entities. Selecting images on sequence-level boosted

dataset sizes by a factor of 20 (the average sequence length).

We note that this practical methodology however introduces

further bias in the data. Most importantly, it destroys the

i.i.d. assumption of training data. E.g. successive frames

of the same entity are highly stochastically dependent. This

is why a random split between train and test data must in-

dispensably assign sequence-wise and not frame-wise for

correct performance measures. We propose to call this en-

largement of training data natural augmentations.

Next, we elaborate on dataset-specific choices and insights

for each task. For genus identification, the prototypes pro-

vided insufficient images of wasps, bumblebees and hor-

nets. Manual search for these events was infeasible. Thus,

we train this task solely on images from iNaturalist [13]. It

is important not to mix it with bee images from the proto-

type, since this would lead to overfitting. Hence, the task

is trained in another, closely related domain. Similar ap-

proaches such as multi-task domain adaptation by Gebru et

al. have been proposed [9].

We integrated a small classification dataset by Rodriguez et

al. and add box annotations. Furthermore, entity sequences

with pollen were sampled from different devices and pollen

boxes were drawn for each frame, creating a set of 5536 la-

beled images.

One issue with the classification module is class imbalance,

especially with only a few samples of dead honeybees being

dragged out of the hive. Every video or prototype contains

specific calibration parameters such as background tint and

slightly different focal lengths. We implemented two strate-

gies to reduce the risk of decision boundaries based on non-

task related information. First, for every sequence of an

underrepresented class, we include a sequence for the other

classes from the same video as well. Additionally, we intro-

duce special augmentations to reduce potential bias. This

includes the commonly used mathematical groups of rota-

tion, shifting, shearing and flipping. To avoid tint bias, we

utilize targeted color transformations based on Reinhard et

al. [21]. This augmentation adjusts tint in order to match a

Table 1: Overview of datasets sizes

Task Origin |Xtrain| |Xtest| |X|

Genus classification [13] 8519 632 9151

Pollen detection Ours 5238 298 5536

Pollen detection [23] 629 85 714

Classification Ours 9021 903 9924

Pose Estimation Ours 191 38 229

Structural Learning Ours 69387 15681 85068

target which we sampled from the overall training images.

We used an OpenCV implementation for this augmentation

[25].

The process of a systematic publication of the dataset as

a potential benchmark is ongoing. Until this infrastruc-

ture is built and data quality is reviewed, please refer to

data@apic.ai for early access.

3.3. Training

Training a multi-objective loss function imposes addi-

tional challenges. In particular the combination of pose es-

timation, object detection, two classification tasks and a de-

coder is to the best of our knowledge unprecedented. In this

section we elaborate on procedures and best practices that

we applied in order to stabilize this optimization problem.

First, we formally denote the total loss LMulti as a summa-

tion of balanced task-wise losses as

LMulti =α1LCla + α2LGen

+α3(L
Conf
Pol + LLoc

Pol)

+α4LPose + α5LDec +
d∑

j=0

βj‖Wj‖
2
2

. (1)

αi describes the weight of loss Li. We also use a L2-

regularization in all layers j ∈ {0, . . . d} of the graph for

all weights Wj and add it as
∑d

j=0 βj‖Wj‖
2
2. Classifica-

tion tasks are trained using the standard cross-entropy loss,

pose estimation and the decoder module use squared re-

gression errors and the pollen detection loss consists of the

box-classification and localization loss proposed by Liu et

al. [16]. The prediction vector ŷ depends on the input im-

age x and model parameters θ. The following tensor de-

scribes it for all five modules. p represent class probabil-

ities, x1, y1, x2, y2 box coordinates and pkx, pky the loca-

tion of the maximum value (peak) in the confidence maps

for each keypoint.

ŷ(x, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p¬Pollen, pPollen, pDrone, pDead)
(pBee, pWasp, pBumblebee, pHornet)
[
(pPollen-Box, x1, y1, x2, y2)

(1)

(pPollen-Box, x1, y1, x2, y2)
(2)

]

confmaps(1,...,32),⎡
⎢⎣
(pkx, pky, pkconf)

(1)

...

(pkx, pky, pkconf)
(32)

⎤
⎥⎦

x̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

We used task-wise performance metrics to evaluate each

task, optimize hyperparameters and calculate a performance

metric for the multi-task net. It weights each task equal as

PMulti =
1

4

(
AUCCla+AUCGen+APPol+(1−ADPose)

)
. (3)

Classification tasks use the Area Under Curve (AUC) of the

receiver operating characteristic as their evaluation metric.

Pollen detection uses the average precision of box estimates

at a 0.5 intersection over union (IOU). The pose estimation

is evaluated by the average distance (AD) between predicted

and actual keypoints. For a total of K keypoints, this is

ADPose =
1

K

K∑

j=1

1

|Xtest|

∑

x∈Xtest

1

d
‖p̂k

(j)
− pk(j)‖2 (4)

We scale the difference between actual and predicted key-

points by d, which represents the diagonal of the image and

thus scales the error to an interval between zero and one.

Additionally, we tracked Multiscale Structural Similarity

(MS-SSIM) for the image reconstructions of the decoder

during training based on Wang et al. [34].

We chose joint training as the training methodology in-

stead of alternate training, because we explicitly consider

all tasks in every parameter update. Therefore, we feed a

heterogeneous mini-batch to the model. We determine the

proportion of observations from task datasets with random

uniform sampling. Since an observation only contains an-

notations for one task, the loss and gradients of the other

tasks cannot be calculated for that particular sample. In

practice we therefore multiply the task-losses with an in-

dicator (“mask”), that is 0 if there exists no annotation for

the task and 1 otherwise.3

We test several parameter update strategies. First, we up-

date model parameters θ using the regular stochastic gra-

dient descent with gradients calculated from the combined

loss LMulti and learning rate η:

θ ← θ − η∇WLMulti. (5)

We test two approaches that use gradient normalization. In

the global norm scenario, we clip and normalize the whole

gradient vector over the total loss:

θ ← θ − η
1

‖∇WLMulti‖ 2

∇WLMulti. (6)

This way, we try to keep parameter updates within a fixed

range. In the last approach we form gradients on each task

first, perform the normalization on each of these vectors and

then combine them as an average. We denote this approach

task-wise Grad Norm as proposed by Chen et al. [3]:

θ ← θ − η
1

T

T∑

t=1

1

‖∇WLt‖ 2

∇WLt. (7)

This way, the signal to the parameter update from each task

should be represented equally. We can also combine the

gradient normalization approaches with balance updates.

3Masked gradients also need to be excluded from moment estimates of

optimizers

4. Experiments

4.1. Hyperparameters

To determine the right training setup, we first perform a

random search with a total of 40 models trained for 3000

steps each and a batch size of 32. We see the results in

Figure 4. The left plot depicts the gradient normalization

(a) Gradient Normalization. (b) Optimizer.

Figure 4: Random search on training hyperparameters.

strategies. In fact, using the global or the task-wise gradient

norm (grad norm), establishes better conditions for learning

compared to the normal gradient descent setting. The Task-

wise gradient norm achieves the highest performance and

median and is used for the final training. In the second plot,

we compare two different optimizers Adam and Momen-

tum. Since Adam strongly outperforms Momentum, keep-

ing individual learning rates is very useful in a joint training

setting.

To mitigate signal differences from the hypersurface of each

individual loss, we also trained each task individually for

3000 gradient updates and normalized the task loss for the

multi-task training by the final training loss from the single-

task setting. We keep this normalization fixed because the

dynamic balancing of task losses did not work well with

Adam.

4.2. DeepBees Training

We trained the final MultiNet in two stages. In the first

stage the batch size is fixed to 32 and the learning rate to

0.0001. Therefore, the effective batch size for each task

at that stage is 32
5 ≈ 6.4 on average. The performance of

pollen detection remained low with these batch sizes due to

high noise in the box coordinate regression. In the second

phase we decrease the learning rate to 1e−5 and increase

batch size to 128, yielding an effective batch size of 25.6 on

average for each task. Increasing batch size at a later stage is

a finding by Smith et al. [29] and improved pollen detection

a lot. Decreasing the learning rates at the end of optimiza-

tion is also a common technique seen in literature. Figure 5

depicts various metrics and their changes on the training and

test set. In the first chart, we see the MS-SSIM of original

and reconstructed images. For both phases the similarity

(a) Structural Similarity. (b) Mean Average Distance.

(c) Genus Accuracy. (d) Classification Accuracy.

(e) Pollen Detection Precision. (f) Pollen Detection Recall.

Figure 5: Metric changes on train and test set during the

optimization of the MultiNet.

score increases. The second Figure 5b tracks the average

distance error of the pose estimation module. Due to the

small number of labeled pose images, they are more fre-

quently sampled compared to other images from other tasks

and convergence is faster. The prediction accuracy of the

genus module is shown in Figure 5c. It measures the per-

centage in which the predicted class matches the actual class

in relation to all predictions. We notice a larger gap between

test and training accuracy. Given the low signal-to-noise ra-

tio of the dataset, this is coherent. In the second phase the

training accuracy reaches its limits at close to 100%, while

the test accuracy converges at approximately 70%. We can

compare this measure to the accuracy of bee classification

in Figure 5d. The classification task is learned faster and

achieves accuracy above 90%, even for the test set. We

also expect the AUC to reflect on the performance differ-

ence between the tasks. Figure 5e and 5f show precision

and recall of bounding boxes of the pollen detection before

post-processing with Non-Maximum Suppression (NMS).

The task generally has good recall but struggles with the

precision. Due to motion blur and occlusion, the presence

Figure 6: Exemplary outputs of DeepBees.

of pollen is often difficult to assess. The localization, on the

other hand, is less challenging since pose features are ex-

plicitly learned.

A sample model output on test videos is shown in Figure 6.

The net analyzes each detected bee individually.

4.3. Evaluation

In Figure 7 we have collected the performance evalua-

tions of every module. The variance in the average dis-

tance between estimated and actual keypoint is higher for

the wings and outer points of the limbs since they are more

difficult to score. The genus module struggles with hor-

nets (yellow line), but manages to identify the other classes.

In comparison, the classification module works well on all

classes. The AP for the object detection task visualizes the

trade-off between precision and recall of pollen detection.

In Table 2 we compare the final performances of DeepBees

with best performances acquired in a single task setting.

Single tasks are trained for 6000 steps on 32 batches using

Adam such that they saw the same amount of training data

as DeepBees. Especially the classification task profits from

multi-task learning. Genus and pose show similar perfor-

mance levels while pollen detection worsens. We interpret

that the features of the motion apparatus for pose estima-

tion are on the one hand useful for pollen detection, but also

increase additional noise when deciding if pollen is present

or not. Overall the performance is better and while sharing

the same sized latent space representation for all five tasks

instead of customizing it for only one task.

Major benefits also come in terms of deployment costs.

Combining four insightful inferences to one helps to reduce

power consumption and maintenance of the model with no

performance disadvantage. We see this as the strongest

Table 2: Task performance comparison for individual training (Single-Task) and DeepBees.

Model AUCcla AUCgen APpol 1−ADPose PMulti

Single-Task 70.34% 76.05% 46.64% 90.12% 70.78%

DeepBees 82.41% 76.19% 40.14% 93.61% 73.08%

(a) AD of Pose Module.

(b) AUC Genus Module. (c) AUC of Classification.

(d) AP of Pollen Detection.

Figure 7: Performance Metrics of DeepBee modules.

achievement of DeepBees. The model is now deployed as

a Tensorflow serving and analyzes data from the 49 honey

bee hives.

5. Conclusion

In this paper, we shared an approach to efficiently model

a system as well as a deep learning architecture to automate

and scale honey bee monitoring.

We emphasized the practical added value of a multi-task

learning approach being flexible due to its modularity and

allowing for a cost-benefit adjustment in sampling and an-

alyzing sequences from hives. We collected and integrated

data such that all tasks could be trained and deployed at a

suitable quality.

We also showed that when trained properly, the multi-task

model does not worsen performance. We hope to see the

latent space of DeepBees further improved in the near fu-

ture with more health-related extensions. Especially direct

mappings to activities, diseases or mite infestation remains

a challenge due to lack of data. Defining temporal archi-

tectures could also further improve results. We are opti-

mistic that a large scale collection of data from a variety

of hives will capture the relevant and necessary amounts of

data to learn and automate health-related insights with con-

volutional neuronal nets in the near future and are glad to

contribute along this way.

References

[1] Boecking, Otto and Spivak, Marla. Behavioral defenses

of honey bees against varroa jacobsoni oud. Apidologie,

30(3):141–158, 1999.

[2] K. Bozek, L. Hebert, A. S. Mikheyev, and G. J. Stephens. To-

wards dense object tracking in a 2d honeybee hive. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4185–4193, 2018.

[3] Z. Chen, V. Badrinarayanan, C. Lee, and A. Rabinovich.

Gradnorm: Gradient normalization for adaptive loss bal-

ancing in deep multitask networks. CoRR, abs/1711.02257,

2017.

[4] D. L. Cox-Foster, S. Conlan, E. C. Holmes, G. Palacios, J. D.

Evans, N. A. Moran, P.-L. Quan, T. Briese, M. Hornig, D. M.

Geiser, V. Martinson, D. vanEngelsdorp, A. L. Kalkstein,

A. Drysdale, J. Hui, J. Zhai, L. Cui, S. K. Hutchison, J. F.

Simons, M. Egholm, J. S. Pettis, and W. I. Lipkin. A metage-

nomic survey of microbes in honey bee colony collapse dis-

order. Science, 318(5848):283–287, 2007.

[5] A. Dutta, A. Gupta, and A. Zissermann. VGG image anno-

tator (VIA). http://www.robots.ox.ac.uk/ vgg/software/via/,

2016. Version: 2.0.6, Accessed: 01.11.2018.

[6] L. Fortel, M. Henry, L. Guilbaud, A. L. Guirao,

M. Kuhlmann, H. Mouret, O. Rollin, and B. E. Vaissière. De-

creasing abundance, increasing diversity and changing struc-

ture of the wild bee community (hymenoptera: Anthophila)

along an urbanization gradient. 9(8), Aug. 2014.

[7] W. Ge and Y. Yu. Borrowing treasures from the wealthy:

Deep transfer learning through selective joint fine-tuning.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017.

[8] T. Gebru, J. Hoffman, and L. Fei-Fei. Fine-grained recogni-

tion in the wild: A multi-task domain adaptation approach.

In Proceedings of the IEEE International Conference on

Computer Vision, pages 1349–1358, 2017.

[9] T. Gebru, J. Hoffman, and L. Fei-Fei. Fine-grained recogni-

tion in the wild: A multi-task domain adaptation approach.

CoRR, abs/1709.02476, 2017.

[10] C. A. Hallmann, M. Sorg, E. Jongejans, H. Siepel,

N. Hofland, H. Schwan, W. Stenmans, A. Müller, H. Sumser,

T. Hörren, et al. More than 75 percent decline over 27 years

in total flying insect biomass in protected areas. PloS one,

12(10):e0185809, 2017.

[11] L. Hein. The economic value of the pollination service, a

review across scales. The Open Ecology Journal, 2(1):74–

82, Sept. 2009.

[12] M. Henry, M. Beguin, F. Requier, O. Rollin, J.-F. Odoux,

P. Aupinel, J. Aptel, S. Tchamitchian, and A. Decourtye. A

common pesticide decreases foraging success and survival in

honey bees. Science, 336(6079):348–350, 2012.

[13] G. V. Horn, O. Mac Aodha, Y. Song, A. Shepard, H. Adam,

P. Perona, and S. J. Belongie. The inaturalist challenge 2017

dataset. CoRR, abs/1707.06642, 2017.

[14] C. M. Kennedy and E. Lonsdorf. A global quantitative syn-

thesis of local and landscape effects on wild bee pollinators

in agroecosystems. Ecology Letters, 16(5):584–599, Mar.

2013.

[15] H. Li, K. Ota, and M. Dong. Learning iot in edge: Deep

learning for the internet of things with edge computing. IEEE

Network, 32(1):96–101, Jan 2018.

[16] W. Liu, D. Anguelov, D. E. Erhan, C. Szegedy, S. Reed,

C. Fu, and A. Berg. SSD: single shot multibox detector.

CoRR, abs/1512.02325, 2015.

[17] F. Nazzi and F. Pennacchio. Honey bee antiviral immune bar-

riers as affected by multiple stress factors: A novel paradigm

to interpret colony health decline and collapse. Viruses,

10(4), 2018.

[18] R. J. Paxton. Does infection by nosema ceranae cause colony

collapse disorder in honey bees (apis mellifera)? Journal of

Apicultural Research, 49(1):80–84, 2010.

[19] T. D. Pereira, D. E. Aldarondo, L. Willmore, M. Kislin,

S. S.-H. Wang, M. Murthy, and J. W. Shaevitz. Fast animal

pose estimation using deep neural networks. bioRxiv, page

331181, 2018.

[20] S. G. Potts, J. C. Biesmeijer, C. Kremen, P. Neumann,

O. Schweiger, and W. E. Kunin. Global pollinator declines:

trends, impacts and drivers. Trends in Ecology & Evolution,

25(6):345 – 353, 2010.

[21] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley. Color

transfer between images. IEEE Computer Graphics and Ap-

plications, 21(5):34–41, 2001.

[22] I. Rodrı́guez, K. Branson, E. Acuña, J. Agosto-Rivera, T. Gi-

ray, and R. Mégret. Honeybee detection and pose estimation

using convolutional neural networks. Technical report, Tech-

nical report, RFIAP, 2018.

[23] I. F. Rodriguez, R. Megret, E. Acuna, J. L. Agosto-Rivera,

and T. Giray. Recognition of pollen-bearing bees from video

using convolutional neural network. https://github.

com/piperod/PollenDataset, 2017.

[24] I. F. Rodriguez, R. Megret, E. Acuna, J. L. Agosto-Rivera,

and T. Giray. Recognition of pollen-bearing bees from video

using convolutional neural network. In 2018 IEEE Win-

ter Conference on Applications of Computer Vision (WACV),

volume 00, pages 314–322, Mar 2018.

[25] A. Rosebrock. Super fast color transfer between im-

ages. https://github.com/jrosebr1/color_

transfer, 2004.

[26] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and

L. Chen. Inverted residuals and linear bottlenecks: Mo-

bile networks for classification, detection and segmentation.

CoRR, abs/1801.04381, 2018.

[27] C. W. Schneider, J. Tautz, B. Grnewald, and S. Fuchs. Rfid

tracking of sublethal effects of two neonicotinoid insecti-

cides on the foraging behavior of apis mellifera. PLOS ONE,

7(1):1–9, 01 2012.

[28] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge comput-

ing: Vision and challenges. IEEE Internet of Things Journal,

3(5):637–646, Oct 2016.

[29] S. L. Smith, P. Kindermans, and Q. V. Le. Don’t decay the

learning rate, increase the batch size. CoRR, abs/1711.00489,

2017.

[30] J. Sung. Ssd in tensorflow: Traffic sign detection and classi-

fication. https://github.com/georgesung/ssd_

tensorflow_traffic_sign_detection, 2017.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Computer Vision and

Pattern Recognition (CVPR), 2015.

[32] M. Teichmann, M. Weber, M. Zllner, R. Cipolla, and R. Ur-

tasun. Multinet: Real-time joint semantic reasoning for au-

tonomous driving. In 2018 IEEE Intelligent Vehicles Sympo-

sium (IV), pages 1013–1020, June 2018.

[33] D. vanEngelsdorp, J. D. Evans, C. Saegerman, C. Mullin,

E. Haubruge, B. K. Nguyen, M. Frazier, J. Frazier, D. Cox-

Foster, Y. Chen, R. Underwood, D. R. Tarpy, and J. S. Pettis.

Colony collapse disorder: A descriptive study. PLOS ONE,

4(8):1–17, 08 2009.

[34] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale struc-

tural similarity for image quality assessment. In The Thrity-

Seventh Asilomar Conference on Signals, Systems & Com-

puters, 2003, volume 2, pages 1398–1402. Ieee, 2003.

[35] F. Wario, B. Wild, R. Rojas, and T. Landgraf. Automatic

detection and decoding of honey bee waggle dances. PloS

one, 12(12):e0188626, 2017.

[36] M. E. Watanabe. Colony collapse disorder: many suspects,

no smoking gun. Bioscience, 58(5):384–388, 2008.

[37] B. Wild, L. Sixt, and T. Landgraf. Automatic localization

and decoding of honeybee markers using deep convolutional

neural networks. CoRR, abs/1802.04557, 2018.

