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A B S T R A C T

Buzz-pollinated crops, such as tomatoes, potatoes, kiwifruit, and blueberries, are among the highest-yielding
agricultural products. The flowers of these cultivated plants are characterized by having a specialized flower
morphology with poricidal anthers that require vibration to achieve a full seed set. At least 446 bee species, in
82 genera, use floral sonication (buzz pollination) to collect pollen grains as food. Identifying and classifying
these diverse often look-alike bee species poses a challenge for taxonomists. Automated classification systems,
based upon audible bee floral buzzes, have been investigated to meet this need. Recently, convolutional
neural network (CNN) models have demonstrated superior performance in recognizing and distinguishing bee-
buzzing sounds compared to classical Machine-Learning (ML) classifiers. Nonetheless, the performance of CNNs
remains unsatisfactory and can be improved. Therefore, we applied a novel transformer-based neural network
architecture for the task of acoustic recognition of blueberry-pollinating bee species. We further compared the
performance of the Audio Spectrogram Transformer (AST) model and its variants, including Self-Supervised
AST (SSAST) and Masked Autoencoding AST (MAE-AST), to that of strong baseline CNN models based on
previous work, at the task of bee species recognition. We also employed data augmentation techniques and
evaluated these models with a data set of bee sounds recorded during visits to blueberry flowers in Chile (518
audio samples of 15 bee species). Our results revealed that Transformer-based Neural Networks combined with
pre-training and data augmentation outperformed CNN models (maximum F1-score: 64.5% ± 2; Accuracy:
82.2% ± 0.8). These innovative attention-based neural network architectures have demonstrated exceptional
performance in assigning bee buzzing sounds to their respective taxonomic categories, outperforming prior
deep learning models. However, transformer approaches face challenges related to small dataset size and class
imbalance, similar to CNNs and classical ML algorithms. Combining pre-training with data augmentation is
crucial to increase the diversity and robustness of training data sets for the acoustic recognition of bee species.
We document the potential of transformer architectures to improve the performance of audible bee species
identification, offering promising new avenues for bioacoustic research and pollination ecology.
1. Introduction

Insect pollinators are key providers of essential ecosystem services
including agricultural crop pollination and for flowering plants in adja-
cent wildlands. The production of about 35% of the global food supply
humans eat depends on animal pollination, primarily by social and soli-
tary bees (Potts et al., 2016). Approximately, 75% of the world’s 1440
crops benefit from animal pollination (Klein et al., 2007). However, pol-
lination can fail or be insufficient, affecting agricultural productivity

∗ Correspondence to: Avenida San Miguel 3696, Talca, Región del Maule, Chile.
E-mail address: jmesquita@ucm.cl (J.N. Mesquita-Neto).

(Lippert et al., 2021; Wilcock and Neiland, 2002). Managed pollinators
are often used in agriculture plantings to supplement native pollinators
and increase the yield and quality of crop production (Velthuis and
Van Doorn, 2006; Rucker et al., 2012). However, some crops have a
specialized flower morphology with poricidal anthers that require vi-
bration to achieve a full seed set, called ‘‘buzz-pollinated crops’’ (Cooley
and Vallejo-Marín, 2021), such as tomatoes, potatoes, kiwifruit, cran-
berries, and blueberries, which are among the highest-yielding and
most valuable agricultural products.
https://doi.org/10.1016/j.ecoinf.2025.103010
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To efficiently extract pollen from flowers of buzz-pollinated plants
nd pollinate them, bees vibrate these tubular anthers using their
ndirect flight muscles, which shakes the pollen inside the hollow an-
hers causing the pollen grains to be expelled through the apical pores
f the anthers (Buchmann et al., 1983) and striking the bees. These

vibrations produce audible sounds ‘‘bee buzzes’’ that give the name
to this phenomenon, known as buzz pollination or floral sonication
(Buchmann et al., 1983; De Luca and Vallejo-Marin, 2013). Numerous
studies have shown that bee visits, especially by those capable of buzz
pollination, can improve fruit yield and quality and achieve a full
seed set in several buzz-pollinated crops (tomato: Banda and Paxton,
1990 kiwifruit: Pomeroy and Fisher, 2002; Kim et al., 2005 eggplant:
Hikawa, 2004 blueberry and cranberry: Stubbs and Drummond, 1996;
Javorek et al., 2002).

Blueberries, for example, can be highly dependent upon buzzing
ees to set fruit or increase fruit size. These buzzing visits can deposit
p to five times more pollen and produce fruits 1.8 times heavier than
hose visited solely by honeybees or other non-buzzing insects (Cortés-

Rivas et al., 2023a). However, the quality of pollination (i.e. pollen
delivery) provided varies among bee species, even among those capable
of vibrating flowers (Cortés-Rivas et al., 2023a). Differences in body
size (relative to flower size) and foraging behavior of visiting bees
(number of flowers visited per unit time) have been proposed to explain
the different pollination efficiencies among bee visitors (Solís-Montero
nd Vallejo-Marín, 2017; Mesquita-Neto et al., 2021). Consequently,

the species of the local bee pollinator guild differ in their ability to
ollinate, and the use of a bee species that is not suitable for a particular
rop reduces its pollination services (Greenleaf and Kremen, 2006;

Macias-Macias et al., 2009; Benjamin and Winfree, 2014) Therefore,
it is important to correctly identify crop-visiting bees, which are the
true and most efficient crop pollinators for the crop plant and localities
under consideration.

Nonetheless, the considerable diversity of bee species and other
insects that visit flowers poses a challenge to taxonomists (Troudet
et al., 2017). Only 446 species of bees have been directly observed
to buzz pollinate flowers with porose anthers. Since these species are
scattered across 82 bee genera, and there are at least 20,507 bee species
in 7 families, there are likely additional bee species that use floral
sonication to collect pollen (Ascher and Pickering, 2020; Orr et al.,
2020). Furthermore, traditional taxonomic recognition and classifica-
ion of bees and other insects is not a trivial activity, as species can be

almost identical in appearance (Gradišek et al., 2017). Taxonomists rely
rimarily upon morphological, genetic or behavioral characteristics
o identify bees and other insects. These methods, however, tends
o be time-consuming and often error-prone, since they are generally
ependent on human expertise and experience. The lack of suitably

trained taxonomists exacerbates this problem (Francoy et al., 2012;
Santana et al., 2014). Due to the limitations of traditional taxonomy, it
s advisable to develop and implement new and affordable technologies
hat also meet the required taxonomic rigor (Gaston and O’Neill, 2004;

Zapponi et al., 2017; Neuenschwander et al., 2010).
To address this requirement, automated classification systems for

lants and animals have recently been developed and evaluated
Schroder et al., 2002; Santana et al., 2014; Yanikoglu et al., 2014;

Valliammal and Geethalakshmi, 2011; Gao et al., 2024), among which,
coustic classification systems stand out. Sound samples are relatively
asy to record in the field and can also be recorded remotely and
ontinuously over long periods in a scalable and minimally invasive
anner (Gradišek et al., 2017). However, capturing bee sounds has its
nique challenges, which are further complicated by the quality of the

recordings, the presence of background noise (generally much louder
than the buzzing sounds), and the simultaneous occurrence of multiple
often overlapping sound events from different species (Ferreira et al.,
2023). In addition, species-specific sound event detection requires the
identification, classification, and quantification of individual acoustic
vents (You et al., 2023), which often require hundreds of hours of
2 
manual effort to properly label (e.g., determine time markers, species
IDs, and sound types) (Oswald et al., 2022).

On the other hand, Deep Learning (DL) has become the standard
for the automatic recognition and classification of bee buzzing sound
ignals with efficiency. One of the major challenges is that acoustic
pectrograms, in contrast to common images or audio spectrograms,
ften lack sufficient textural features due to multivariate influences in

the environment such as ambient noise interference (e.g., native and
domesticated animals, traffic or wind). As such, it provides only certain
low-level correlations between time and frequency axes, which implies
 need for models with strong robustness. DL-based models, specifically
onvolutional neural networks (CNNs), and their variants have added
ertain improvements for bee species audio recognition (Ferreira et al.,

2023). Indeed, CNN models can outperform classical ML classifiers in
the recognition of bee-buzzing sounds (Truong et al., 2023). However,

NNs rely heavily on pre-training with large acoustic data sets and
data augmentation to outperform classical Machine Learning (ML) clas-
sifiers. Despite these enhancements, the performance of CNNs in bee
buzzing recognition remains unsatisfactory compared to ML standards,
achieving a maximum F1 score of only 58% (Ferreira et al., 2023). In
addition, both DL and classical ML models typically demand substan-
tial amounts of training set data to adequately capture the inherent
ariability present in the data being modeled (O’Mahony et al., 2020).
ence, while CNNs remain valuable models, there is still room for

improvement, particularly with the emergence of novel attention-based
neural network architectures such as ‘‘transformers/perceivers’’ (Elliott
et al., 2021; Wolters et al., 2021).

Indeed, transformers seem to achieve state-of-the-art results and
have previously demonstrated considerable potential for various audio
classification benchmarks. In particular, their notable success in audio
processing further enhances the feasibility of bioacoustic research,
such as the Audio Spectrogram Transformer (AST) model (Gong et al.,
2021c). Compared with CNNs for the bee sound recognition task,
transformer architecture is expected to perceive both global and local
nformation from acoustic spectrograms. Therefore, we use the trans-

former as the backbone, instead of CNNs, for the acoustic recognition
of bee species. To our knowledge, researchers have not widely applied
the attention-based mechanism in the field of bioacoustics (Stowell,
2022; Fundel et al., 2023). Therefore, we applied the novel transformer-
based neural network architectures to the task of acoustic recognition
of blueberry-pollinating bee species. Due to the strong representational
apability and demonstrated ability in the acoustic domain of trans-
ormers, we expected that this architecture would outperform CNNs

and enhance the acoustic recognition of bee species (Hypothesis 1).
However, the success of audio spectrogram transformers relies on
supervised pre-training, which requires a large amount of labeled data
for training compared to CNNs (Dosovitskiy et al., 2021). Conversely,
collecting bee audio data in the field typically demands domain ex-
pertise and entails extensive, time-consuming sampling and labeling
efforts, often resulting in small and unbalanced datasets (e.g., Ribeiro
et al. (2021), Ferreira et al. (2023) and Fundel et al. (2023)). To
reduce the need for large amounts of labeled data for the AST model,

e expect that adding regularization techniques to the fine-tuning
stage, such as data augmentation techniques, would greatly improve
the performance of the AST model in the acoustic recognition of bee
species (Hypothesis 2).

2. Materials and methods

We used the data set of Ferreira et al. (2023), who also trained
DL models for the acoustic detection of bee species visiting blueberry
flowers in Chile. In contrast to our study, their analyses relied on
DL models utilizing multi-layer artificial neural networks, specifically
Convolutional Neural Networks (CNNs). The data set comprises 518
audio samples (totaling 3595 buzzing-sound segments, with 1728 being
sonication events) from 15 bee species during their visits to highbush
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Fig. 1. Histogram showing the distribution of the duration of sampled buzzing-sound segments across bee species visiting blueberry flowers. The curves show the proportion of
values in each range of segment duration (in seconds) per bee species.
m

f
o
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h

blueberry (Vaccinium corymbosum) flowers in five orchards situated in
outhern Chile (Maule and Los Ríos regions), spanning September to
ovember of 2020 and 2021. While most bee species are native to
hile (12 species), Bombus terrestris, B. ruderatus, and Apis mellifera are

exotics. The duration of audio samples ranges from 5 s to over one
minute, recorded at a sampling rate of 44.1 kHz. The distribution of
samples per bee species exhibited significant imbalance, ranging from
ust eight samples (Corynura chloris) to 108 (Cadeguala occidentalis; also
see Fig. 1; Table S4).

2.1. Acoustic pre-processing

The data set of Ferreira et al. (2023) was already acoustically pre-
processed. We used it here without any changes, meaning we kept
the bee buzzes that had already been detected and selected. Ferreira
t al. (2023) conducted data pre-processing before training DL models

to enhance their performance. The original sound file recordings (in
.wav format) were manually categorized, and segments featuring bee-
buzzing sounds were selected (see examples in Fig. 2). These segments
were labeled as being of one of two categories: (1) sonication, which
includes floral buzzing sounds produced by bees vibrating blueberry
flowers, or (2) flight, encompassing wingbeat sounds from bees flying
etween flowers. In particular, Ribeiro et al. (2021) found that sonica-
ion sounds contributed more to the performance of ML models than
id flight sounds for the acoustic recognition bee species. However,

a dataset containing both sonication and flight sound segments con-
tributed as much to the training of a classifier as the same dataset
containing only sonication sounds (Ribeiro et al., 2021). Therefore, we
used both categories of sounds together in all experiments, since flight
and sonication together yielded a larger number of audio segments and
ncluded bee species not capable of sonication. The analysis was carried

out using Raven Lite software (Cornell Laboratory of Ornithology in
thaca, New York).

Background noise was common in the data set (e.g., traffic, birds,
crickets, people talking, etc.). We kept portions of field recordings
3 
without bee sounds for later analysis (see Fig. 2). We chose to input
the original audio without removing or attenuating the ambient noise
because noise is almost unavoidable in real-world situations (Ribeiro
et al., 2021). Training our neural network on noisy data means it would
generalize similarly to noisy test data.

2.2. Spectrogram generation

Audio feature extraction techniques transform raw audio data gen-
erated by acoustic pre-processing into features that explicitly represent
properties of the data that may be relevant for later ML classification.
We used two main functions to convert waveform information into
time–frequency representations of audio signals: the Log Mel Spec-
trogram and the Mel Filterbank. We incorporated these image-analog
inputs to facilitate complex data interpretation by exploiting their
visual similarities, following the protocols proposed by Dosovitskiy
et al. (2021), Gong et al. (2021a) and Baade et al. (2022a).

We used the Log Mel Spectrogram within the PANNs (CNN14)
odel, as recommended by Kong et al. (2020a) and it is also used in

EffNet V2 Small. The Log Mel Spectrogram is a sophisticated trans-
ormation of audio signals that greatly improves the representation
f sound for analysis and signal processing. We first decomposed the
udio signals into their component frequencies over time to create a

spectrogram using the Short-Time Fourier Transform (STFT) algorithm.
We then filtered this spectrogram through a Mel filter bank, which
distorts the frequency scale to match the Mel scale. The Mel scale is
a conversion of frequency in Hertz (𝑓 ) to the Mel scale, as shown in
Eq. (1). Finally, the Log Mel Spectrogram and the logarithm of the
amplitude of the frequencies were generated to convert the intensity
scale to one that reflects the logarithmic perception of loudness by the
uman auditory system. The specific parameters used to extract the Log

Mel Spectrogram can be seen in Table 1
𝑀 𝑒𝑙 = 2.595 log10(1 +

𝑓
700

) (1)
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Fig. 2. Examples of spectrograms of the two categories of buzzing sounds (sonication and flight) produced by two species of bees visiting blueberry flowers (Cadeguala occidentalis
and Bombus terrestris). Note that the duration, amplitude, and frequency of the buzzing sounds vary between species and between types of bee sounds (sonication and flight).
Fig. 3. Overview of the approach adopted for the acoustic classification of bee buzzing sounds and the Deep Learning pipeline enhanced by data augmentation techniques during
the pre-processing phase. The original audio files (.wav format) containing recordings of bee buzzing sounds during visits to blueberry flowers were manually classified into
sonication or flight (wingbeat sound) segments. This was followed by resampling and the application of data augmentation methods directly to the waveforms (mix-up and random
truncation). Additionally, Mel spectrograms were extracted from the waveforms and another augmentation technique was applied (SpecAugment). After the pre-processing stage,
the resulting data set was split into the training/development set and the test data set. The role of the test set was to evaluate the effectiveness of the model classifiers in accurately
assigning the buzzing sound to the respective bee taxa.
We used the Mel filterbank as input for the models PSLA, AST,
SSAST, and MAE-AST, following the guidelines described in their orig-
inal papers. For all Transformer-based models, we first divide the
spectrogram features into overlapping 16 × 16 pixel patches with a
6-pixel overlap in both time and frequency dimensions. Each patch is
then processed through a learned linear projection layer, transforming
it into a 1D patch embedding vector. To enable classification and
maintain consistency with the Transformer architecture, we prepend
a learnable [CLS] token to the sequence and add learnable positional
embeddings to preserve spatial information. The CNN-based models
employ different input processing approaches. EfficientNet, originally
designed and pre-trained for RGB image processing, requires multiple
replications of the single-channel log Mel spectrogram to create a three-
channel input. In contrast, PANNs and PSLA were specifically designed
for audio spectrograms and directly processing single-channel 2D inputs
through specialized convolutional layers. The specific parameters used
can be seen in Table 1. The Mel filterbank used in the feature extraction
process of the Kaldi toolkit was developed as part of an open-source
framework dedicated to human speech recognition research (see Povey
4 
et al. (2011)). While it is aligned with the conventional methodology
used to generate log mel spectrograms, the resulting feature it yields
may exhibit differences. This divergence is due to Kaldi’s comprehen-
sive suite of feature extraction tools, which are optimized for speech
recognition applications. Such specialized adjustments may result in
nuances that distinguish the features extracted by Kaldi from those
obtained by a standard Log Mel Spectrogram approach.

We did not use feature engineering or selection because deep
learning methods (CNNs and transformers) can do this automatically
(Goodfellow et al., 2016).

2.2.1. Data splitting
To facilitate cross-validation, we subjected the audio sample data set

to a rigorous partitioning process. Initially, we divided the dataset into
two equal-sized subsets for training and testing purposes in each repli-
cation (Alpaydm, 1999). However, unlike previous work (see Ribeiro
et al. (2021) and Ferreira et al. (2023)), we further divided the training
set into two portions: 80% designated for training and 20% for valida-
tion. In the end, each replication followed this data distribution: 40%
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for training, 10% for validation, and 50% for testing, resulting in a total
f 10 runs (see Fig. 3). It is important to note that, due to the use of
istinct seeds for each replication, the data distribution varied across

runs.
To assess the effectiveness of supervised classification learning

lgorithms, we utilized the Combined 5 × 2 Cross-validated F-Test
Alpaydm, 1999), which is considered a more reliable alternative to
he 5 × 2 cross-validated t-test (Dietterich, 1998). The Combined 5 × 2
ross-validated F-test addresses the shortcomings of the cross-validated

t-test and offers improved statistical power (Fig. 3). This approach
involved five replications of two-fold cross-validation to ensure robust
and reliable results.

All splits were stratified based on bee species. This approach kept
he original class distribution across all folds, ensuring any existing
lass imbalance was consistently represented in each split. We also used
ixed seeds when randomly choosing the samples to generate the splits
o ensure data reproducibility and to guarantee that all methods were
rained and tested with the same splits. The implementation details
f the splitting are available in our repository: https://github.com/

alefiury/Transformers-Bee-Species-Acoustic-Recognition

2.3. Data augmentation

Data augmentation seeks to improve the performance of ML algo-
ithms by generating additional data for the training set of the model
Chlap et al., 2021; Kumar et al., 2024). It is particularly useful when

the training set is small and/or imbalanced (Abayomi-Alli et al., 2022),
which was the case of our buzzing bee dataset. Data augmentation has
lso improved the performance of CNNs for acoustic recognition of bee
pecies (see Ferreira et al. (2023)). Thus, we used data augmentation to
ncrease the variety and robustness of our training data for both CNN
nd transformer models.

To augment our bee audio dataset, we applied the following data
augmentation techniques that have proven to be useful tools (Fig. 3):
SpecAugment, Random Truncation (RT), and Mixup. SpecAugment
applies time warping, time masking, and frequency masking to log mel
spectrograms, making it an effective method for enriching the training
data set (Park et al., 2019). Although we did not apply time warping in
our experiments, we adopted the following SpecAugment parameters:
the maximum width of frequency masks (F ), the maximum width of
time masks (T ), the number of frequency masks (𝑚𝐹 ) and the number
of time masks (𝑚𝑇 ) applied. The values used for these parameters
were taken directly from the literature, as they have shown consistent
effectiveness across different audio tasks.

Random Truncation involves sampling segments of audio sam-
les for each forward pass of a DL model. This approach contrasts
ith fixed-segment approaches and contributes to improving learning

Ferreira et al., 2023). This technique introduces temporal variability in
udio segments, thereby simulating natural conditions and improving
he robustness of the recognition model. The initial step was to load the
udio recording that will be utilized as the input. The parameters that
ontrol the randomness of segments and intervals were then defined.
he lengths of the segments and the intervals between them were
enerated using a uniform distribution. Subsequently, the segments
ere extracted from the original recording by the generated start times
nd lengths, and then combined to form a new augmented recording.
he Random Truncation augmentation technique is formalized in Algo-
ithm S5, which delineates the procedural steps for implementing this
ethod.

Mixup uses the convex combination of two different features and
abels of audio samples to increase the variability of the training

data. It blends samples from different bee species using the specified
ixing parameter 𝜆 drawn from a Beta(𝛼, 𝛼) distribution (Zhang et al.,

2017). In our implementation, we used 𝛼 (alpha) = 0.5 for the Beta
istribution, which we empirically found worked best for our specific

dataset and task, despite values around 0.3−0.4 being often used in the
5 
literature. The 𝛼 parameter controls the shape of the Beta distribution
from which 𝜆 is drawn, with higher 𝛼 values leading to 𝜆 values closer
o 0.5, resulting in more balanced mixing between samples.

To ensure the integrity of the data augmentation techniques, we
adhered closely to the parameters originally utilized in the original
works for the models. Table 1 illustrates the specific parameters uti-
ized in each method. Data augmentation was conducted dynamically
hroughout the training phase, with a 100% augmentation probability.
ach sample is augmented distinctly in each epoch due to the stochastic
ature of the augmentation methods employed.

2.4. Configurations of transformers

Audio data often have complex and subtle patterns that can be
ifficult to capture using traditional analytical methods. Ideally, the
ttention mechanism helps to identify and focus on these intricate
atterns. Thus, we selected attention-based Transformer models with
emonstrated potential for processing acoustic signals, in particular
he Audio Spectrogram Transformer (AST), the Self-Supervised Au-
io Spectrogram Transformer (SSAST), and the Masked Autoencoding

Audio Spectrogram Transformer (MAE-AST), as described in the sec-
tions above. Unlike traditional Convolutional Neural Networks (CNNs),
which map audio spectrograms directly to labels, these transformer
architectures are built entirely around attention mechanisms, which
elps the model to prioritize and give more weight to significant parts
f the data during processing.

2.4.1. Audio Spectrogram Transformer (AST)
We first applied the Audio Spectrogram Transformer (AST) to im-

prove the task of the acoustic recognition of bee species. The Audio
Spectrogram Transformer (AST) leverages attention-based mechanisms
o capture complex audio patterns (Gong et al., 2021a), making it
ore effective at detecting subtle nuances in audio data compared

o CNNs (Islam et al., 2023). This is primarily due to the ability of
AST to simultaneously process the entire audio sequence, enabling it
to understand long-range dependencies often critical within audio data
samples.

Initially, we used models that had been pre-trained and made
ublicly accessible via the official repository of the authors (see Gong
t al. (2021b)). We then tested the AST extensions as described in the
ollowing subsections.

2.4.2. Self-Supervised Audio Spectrogram Transformer (SSAST)
The Self-Supervised Audio Spectrogram Transformer (SSAST) is

a groundbreaking framework that combines discriminative and gen-
erative self-supervised learning, setting a new benchmark for self-
supervised learning within the context of the Audio Spectrogram Trans-
former (AST) Atito et al. (2021). SSAST significantly enhances AST
erformance across various downstream tasks (Li et al., 2023). On av-
rage, it improves performance by 60.9%, often matching or surpassing
he results achieved by models pre-trained with supervised data. One of
he key advantages of SSAST is that it can perform exceptionally well
ithout needing labeled/annotated data. In addition, SSAST supports
ifferent patch sizes and shapes, providing greater flexibility in its

applications compared to supervised ImageNet pre-training, which
restricts patches to squares. As a result of these key features, SSAST has
outperformed previous models in many tasks, particularly in speech-
related challenges (Bayraktar et al., 2023). For our experiments, we
used the pre-trained SSAST models available from the authors’ official
repository (see Gong et al. (2022)).

https://github.com/alefiury/Transformers-Bee-Species-Acoustic-Recognition
https://github.com/alefiury/Transformers-Bee-Species-Acoustic-Recognition
https://github.com/alefiury/Transformers-Bee-Species-Acoustic-Recognition
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Table 1
Hyperparameter configuration used for all tested CNNs (EffNet V2 Small, PANNs, PSLA) and transformer models (AST, SSAST, MAE-AST) combined with the best hyperparameter
configuration strategies. Also included are model parameters (e.g., number of trainable parameters, batch size, optimizer settings), data preprocessing parameters (e.g., feature type,
sampling rate, window size, hop size, mel bins), and data augmentation parameters (e.g., Mixup 𝛼, SpecAugment settings). Mixup 𝛼 controls the strength of interpolation between
wo random training examples and their labels. SpecAugment parameters include 𝑚𝑇 (number of time masks), 𝑇 (maximum width of time masks), 𝑚𝐹 (number of frequency masks),
nd 𝐹 (maximum width of frequency masks). Min. Frequency and Max. Frequency refers to the frequency range used in mel spectrogram computation.
Hyperparameter EffNet V2 Small PANNs (CNN14) PSLA AST SSAST MAE-AST

Model

Number of trainable parameters 22.18M 81.87M 7.87M 87.74M 87.27M 99.84M
Batch size 32 32 16 16 16 32
Number of epochs 120 120 120 120 120 120
Optimizer Adam Adam Adam Adam Adam Adam
Learning rate 1e−3 1e−3 1e−3 1e−4 1e−4 1e−4
Adam 𝜖 1e−08 1e−08 1e−08 1e−08 1e−08 1e−08
Adam 𝛽 [0.9, 0.999] [0.9, 0.999] [0.9, 0.999] [0.9, 0.999] [0.95, 0.999] [0.9, 0.999]
Weight decay 0.0 0.0 0.0 0.0 5e−7 0.0
Learning rate schedule LinearWarmup LinearWarmup LinearWarmup LinearWarmup LinearWarmup LinearWarmup

Data pre-processing

Feature Log Mel Spectrogram Log Mel Spectrogram Mel Filterbank Mel Filterbank Mel Filterbank Mel Filterbank
Sampling rate 16 khz 32 khz 32 khz 16 khz 32 khz 32 khz
Window size 1024 1024 800 400 800 800
Hop size 320 320 320 160 320 320
Mel bins 64 64 128 128 128 128
Min. Frequency 0 0 20 20 20 20
Max. Frequency 8000 16 000 16 000 8000 16 000 16 000

Data augmentation

Mixup 𝛼 0.5 0.5 0.5 0.5 0.5 0.5
SpecAugment 𝑚𝐹 2 2 1 1 1 1
SpecAugment T 64 64 96 96 96 96
SpecAugment 𝑚𝐹 2 2 1 1 1 1
SpecAugment F 8 8 48 24 48 48
b
e
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2.4.3. Masked Autoencoding Audio Spectrogram Transformer (MAE-AST)
The Masked Autoencoding Audio Spectrogram Transformer (MAE-

ST) combines the architecture of Masked Autoencoders, such as Scal-
ble Vision Learners (MAE) (Baade et al., 2022), with SSAST. MAE-AST

offers notable efficiency advantages, requiring only one-third of the
time and half the memory compared to SSAST, despite sharing a similar

odel architecture. Remarkably, MAE-AST consistently outperforms
SSAST in various downstream tasks when they share the same encoder
epth, with all other factors being constant. We used a pre-trained
AE-AST model that was obtained directly from the authors’ official

epository (see Baade et al. (2022a)).

2.5. Hyperparameter setting

For the sake of replicability, continuity, maintainability, and ad-
vancement of this research, all hyperparameters were detailed per
model in Table 1. The selected value ranges were based on the pa-
ameters suggested in the original studies. We employed the opti-
ization algorithm known as Adam (Kingma and Ba, 2014) for all

our experiments. Adam utilizes adaptive estimates of lower-order mo-
ents for first-order gradient-based optimization of stochastic objective

functions. Thus, it played a pivotal role in our optimization process.
All experiments were performed on a single RTX 5000 GPU equipped

with 16 GB of VRAM. The source code is available at the following
link: https://github.com/alefiury/Transformers-Bee-Species-Acoustic-

ecognition

2.6. Evaluation methods

In scenarios with class imbalances, as is the case with our data
set, it is crucial to select appropriate evaluation metrics. Therefore,

e primarily evaluated our models based on their F1-scores. The F1-
score (MacF1) is a metric that balances precision and recall, making it
particularly useful when the class distribution is imbalanced.

To evaluate the performance of our CNNs and transformer classi-
iers, we relied on Accuracy (Acc) and Macro-F1 (MacF1), which are
ommonly used metrics derived from the confusion matrix. However,
 u

6 
we based the performance of our models primarily on the F1-score
ecause our dataset is highly imbalanced and Accuracy tends to under-
stimate classes with fewer samples (Steiniger et al., 2020). For more

details on these metrics, see Ferreira et al. (2023).

2.6.1. Training and fine-tuning
To evaluate the importance of using pre-trained models for both

standard CNNs and transformers, we compared the performance of our
models with and without pre-training. All the methods used (CNNs and
ransformers) are available in their code repositories in two versions:
 pre-trained version and a non-pre-trained version. The pre-trained
ersions were trained by their authors mainly on large-scale image
atasets like ImageNet (Deng et al., 2009). Some were further pre-

trained on sound datasets, like AudioSet (Gemmeke et al., 2017). For
detailed information about the datasets used in the original pre-training
of these models, we refer the reader to the following publications: Kong
et al. (2020b), Gong et al. (2021c,b, 2022) and Baade et al. (2022a).

The parameter values of pre-trained models are learned during the
re-training process using large-scale datasets, and they are made avail-

able to be used for various tasks. When applying a pre-trained model
to a specific task (such as classifying bee species, in our case), these
models undergo further training on a dataset specific to the task at hand
(e.g. our training sets of bee species sounds). This additional training
is usually referred to as fine-tuning the pre-trained model refined for a
specific task. Essentially, pre-training gives the model a head start by
leveraging what it has learned from a related task before fine-tuning it
for the specific task (Yu et al., 2021). This process is particularly useful
for datasets like ours, where the amount of labeled data is limited and
the classes are imbalanced.

We opted to use pre-trained models for two reasons: firstly, they
ave achieved better performance in audio classification tasks in recent
ears (Gwardys and Grzywczak, 2014; Müller et al., 2020; Palanisamy

et al., 2020; Zhong et al., 2020; Gong et al., 2021a). Secondly, we
expected that the accumulated ‘‘previous knowledge’’ acquired by the
pre-training models in their parameters would be better than train-
ing the models without pre-training, given the small size and the

nbalanced class distribution of our training data.

https://github.com/alefiury/Transformers-Bee-Species-Acoustic-Recognition
https://github.com/alefiury/Transformers-Bee-Species-Acoustic-Recognition
https://github.com/alefiury/Transformers-Bee-Species-Acoustic-Recognition
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Fig. 4. Violin plots of the best models (higher macro F1-score) of CNNs (EffNet and PANNs, purple plots) and transformer models (AST, SSAST, and MAE-AST, green plots) with
he pre-processing techniques (sound feature extraction, pre-training, and/or data augmentation) for the acoustic detection of bee species based on their buzzing sounds produced
uring visits to blueberry fields in southern Chile. While the black box plots show common summary statistics (with the data medians as white lines), the surrounding violin plots
how the probability density of the data at different values. The width of each curve corresponds to the approximate frequency of the data points in each region. Each point on
he plot represents the F1-score obtained by an independent model run (10 runs per model, 120 epochs). (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
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The non-pre-trained versions had their parameters initialized with
andom values before the training process in our experiments. During
he training process, these parameters were optimized on our training

data only. We used the same protocol to fine-tune the pre-trained
versions and to train the non-pre-trained versions. In our approach, we
used a combined 5 × 2 cross-validated F-test, with audio files longer
than 2 s trimmed to 2 s, and shorter audios padded with silence to
achieve a uniform length. For each model, we replaced the original
classification head used in the pre-training stage with a classification
head designed for 15 classes, representing the 15 bee species buzz or
flight sounds being classified. Additionally, we added a sigmoid activa-
tion function to the last layer of each model to store the probabilities.
This configuration allowed us to take advantage of confounding and
training the entire dataset using the same configuration outlined in the
hyperparameters, as given in Table 1.

2.6.2. Baseline convolutional neural networks
To compare transformer-based models with state-of-the-art models,

we selected the CNN classifiers that demonstrated the highest per-
formance in previous studies on acoustic recognition of bee species
(Ferreira et al., 2023): EfficientNet V2, Pre-trained Audio Neural Net-

orks (PANNs), and an additional robust baseline: Pretraining, Sam-
ling, Labeling, and Aggregation (PSLA). We tested both CNN classifiers

individually and in combination with pre-training. Additionally, we
used a data augmentation ensemble previously established as optimal
in prior studies (Ferreira et al., 2023). Classical ML classifiers were not
included as baselines in the current study because their performance
was extensively evaluated against CNNs in Ferreira et al. (2023), where

NNs were found to outperform classical models consistently on this
ataset using identical data splits.
 a

7 
3. Results

3.1. Performance of standard CNNs and transformer classifiers

The performance of the CNN models without any pre-training or
ata augmentation technique was somewhat low, with Macro F1-scores
anging from 22.6% to 43.6%. This makes sense, as the original training
ataset is rather small. However, these scores demonstrated significant
mprovements when CNNs were supplemented with pre-training and/or
udio data augmentation techniques (see Table S1).

The CNN models varied in recognition performance among bee
pecies, as evidenced by Fig. 6. Conversely, the top-performing CNN

model struggled to correctly identify the majority of audio samples
from minority classes (with less than 50% of the audio samples be-
ing incorrectly predicted), namely Corynura chloris 28%, Ruizantheda
mutabilis 24%, Colletes nigritulus 23%, andManuelia postica 19% (Fig. 6).

Without any data pre-processing (audio augmentation, sampling, or
re-training), the transformers did not show significantly higher perfor-
ance (based on Macro F1-score; 𝑝 > 0.05, combined 5 × 2𝑐 𝑣 F-test) com-
ared to the best CNNs (Fig. 4). Single transformer models (without any

pre-training and data augmentation techniques) performed only slightly
better or even had lower Macro F1-scores than single CNNs, although
these comparisons were not statistically significant (Table 2). The
performance of transformer models became significantly higher than
that of CNNs when they were combined with various pre-processing
techniques, such as sound feature extraction, data augmentation, and
pre-training (Table S1).

However, the transformer models (AST, SSAST, and MAE-AST)
boosted by the best combination with pre-processing techniques (pre-
training and data augmentation), reached better performance at the
coustic recognition of bee species visiting blueberry crops than the
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Table 2
The average predictive performance of the top-performing CNNs (EffNet V2 Small, PSLA, PANNs) and transformer models (AST, SSAST, MAE-AST), was evaluated for recognizing
bee species based on their buzzing sounds during visits to blueberry cultivar flowers in southern Chile. These models were enhanced with pre-training and various data augmentation
techniques. Model performance was assessed using the average Macro F1-score and Macro Accuracy (± standard deviation). Different superscript letters denote significant differences
n F1-score among algorithms (based on MacF1 score; 𝑝 ≤ 0.05, 5 × 2𝑐 𝑣 combined F-test).
Algorithm Data augmentation With pre-training Without pre-training

Macro F1 (%) Accuracy (%) Macro F1 (%) Accuracy (%)

CNN (EffNet V2 Small) RT + Mixup 50.8% (±4)𝑐 ,𝑑 73.2% (±3) 38.7% (±4)𝑑 62.1% (±3)
PANNs (CNN14) SpecAugment + Mixup 56.7% (±2)𝑏,𝑐 79.1% (±1) 44.9% (±3)𝑑 75.0% (±1)
PSLA RT + Mixup 48.6% (±3)𝑐 ,𝑑 73.8% (±2) 48.2% (±3)𝑑 73.6% (±1)
AST (Transformer) SpecAugment + RT + Mixup 61.0% (±2)𝑎,𝑏 80.9% (±1) 42.9% (±2)𝑑 67.8% (±1)
SSAST (Transformer) SpecAugment + RT + Mixup 63.8% (±2)𝑎 81.9% (±1) 42.3% (±2)𝑑 68.7% (±1)
MAE-AST (Transformer) SpecAugment + RT + Mixup 64.5% (±2)𝑎 82.2% (±1) 26.5% (±4)𝑒 61.0% (±3)
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best CNNs (see Table 2; Fig. S3). The Macro F1-score of MAE-AST
combined with SpecAugment, RT, Mixup, and pre-training was 7.8%
higher than that of PANNs with Mixup and SpecAugment (see Table 2;
Fig. 4).

3.1.1. Models complexity
Learning curves were employed to identify instances of underfitting

and overfitting. This is achieved by plotting the training and validation
performance, in terms of Macro F1-score on the 𝑦-axis, against the
training time in terms of epochs on the 𝑥-axis. The blue curve is the
training performance, while the red curve is the performance of the
models on the validation set (Fig. 5). A large gap between the training
and validation lines indicates overfitting. Consequently, the learning
curves indicate that CNN models, both with and without pre-training,
tended to overfit during high-intensity training, but showed reduced
performance during cross-validation (Fig. 5). The best CNN model
(combined with pre-training, Mixup and SpecAugument) was still over-
fitting, but less so than the single model or with only pre-training.
The CNN model can usually perfectly predict bee species identity
for the training set, especially when combined with pre-training, but
did not generalize well when predicting results for new test samples
(validation), characterizing the overfitting.

As with CNNs, all transformer models were overfitted to the training
set (Fig. 5). However, the best transformer model (combined with
re-training, Mixup, SpecAugument, and RT) overfitted much less, es-

pecially compared to the single model or pre-training alone. The trans-
former model combined with data pre-training achieved the highest
overfitting, characterized by a nearly perfect prediction of bee species
dentity for the training set, but did not generalize well when predicting
esults for new test samples (validation). Even the single transformer
odel overfitted less than when combined with pre-training.

3.1.2. Classifier performance per bee species
Although the per-species performance of the transformers was gen-

erally better than that for CNNs, the performance of MAE-AST was
onuniform among classes, varying from 18% (Ruizantheda mutabilis)
o 96% (Centris cineraria). On one hand, the transformers failed to

recognize most of the minority classes (less than 50% of the samples
were incorrectly predicted): Colletes cyanescens 34%, Colletes nigritulus
32%, Manuelia postica 29%, and Ruizantheda mutabilis 18% (see Fig. 6;
Fig. S2). On the other hand, the best transformer model (MAE-AST
combined with pre-training, SpecAugment, RT, and Mixup) performed
well by discriminating among the most represented bee species based
n their buzzing sounds (Fig. S2). The models achieved higher hits
ecognizing the bee species with the highest number of audio samples,
n descending order: Centris cineraria (96% correctly predicted, N = 208

buzzing audio segments), Cadeguala occidentalis (92%, N = 762 audio
segments), Bombus terrestris (91%, N = 589 buzzing audio segments),

and Bombus dahlbomii (82%, N = 589 audio segments).

8 
4. Discussion

Recently, CNN models have demonstrated superior performance to
classical ML classifiers in the species recognition of bee buzzing sounds
(Ferreira et al., 2023). However, when compared to ML standards, their
erformance remained unsatisfactory (Ferreira et al., 2023). Our re-

sults showed that neural networks based on transformers outperformed
CNN models, when combined with pre-training and data augmentation
techniques for the acoustic recognition of bee species, as predicted by
Stowell (2022). These innovative attention-based neural network ar-
chitectures exhibited superior performance when assigning bee buzzes
to their respective taxonomic categories (Genus and species) compared
to traditional DL models, achieving an approximately 14.6% improve-
ment in macro F1-score. Nevertheless, transformers still face challenges
elated to overfitting and require more data sets to achieve results
quivalent to other architectures (Dosovitskiy et al., 2021). Combining

pre-training with data augmentation becomes critical to increasing the
diversity and robustness of training data for the acoustic recognition of
bee species.

4.1. Transformers showed a greater dependence on data pre-training to
utperform CNNs

Our results showed that standard CNN and transformer models
are prone to overfitting, a phenomenon in which a model excels on
he training data but struggles to generalize to new evaluation data

(Guo et al., 2016). Overfitting can occur for several reasons, including
ack of training data (when the training data set is too small), noisy
ata (the presence of irrelevant information in the training data),

overtraining (excessive focus on the training data rather than learning
the underlying patterns), and high model complexity (which learns
he noise in the training data; see Srivastava et al. (2014)). However,
ith pre-training, we observed a substantial absolute improvement of
pproximately 10% by the transformers over the current state-of-the-art
odel (standard CNNs). Interestingly, in some cases, transformer mod-

ls even outperformed standard CNNs when pre-training was applied
without task-specific methods. This highlights the critical role of pre-
training in evaluating future methods for robustness and uncertainty
tasks Hendrycks et al. (2019). Therefore, pre-training and data aug-
mentation were used to address the relatively small dataset size and
class imbalance, subsequently increasing the diversity and robustness of
the training data for acoustic bee species recognition. These techniques
emerge as critical factors in achieving improved performance for bee
pecies detection in blueberry crops, whether CNN or transformer
odels are used.

While both CNNs and Transformers rely on pre-training, CNNs tend
o overfit less than transformer models without pre-training. Thus,
he performance gap between single transformer models and those
ombined with pre-training is wider than that of CNNs. Only when
ombined with pre-training were the Transformers capable of out-
erforming the best-performing CNN model (PANNs combined with
pecAugment, Mixup, and pre-training) in the task of acoustic recogni-

tion of bee species (Hypothesis 1). This implies that transformers may
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Fig. 5. Learning curves showing the performances of CNN and transformer models performances in training and cross-validation sets. The blue lines represent the performance of
he models on the training set, while the red curves represent the performance of the models on the validation set. A large gap between the training and validation lines indicates
verfitting. The shaded areas of the training Macro F1-score (expressed in blue) and validation Macro F1-score (expressed in red) indicate the variance of the estimates. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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have a greater capacity to capture complex patterns in bee buzzing
ounds; however, their performance benefits significantly from appro-
riate pre-training. The application of pre-training significantly im-
roved the performance of transformers, confirming their superiority
ver CNNs in the acoustic recognition of bee species, in line with our
xpectations outlined in Hypothesis 2.

4.2. Retaining environmental noise does not necessarily improve model
performance, but there are advantages for real-world applications

It is well established that the efficacy of signal denoising directly
orrelates with the quality of the output from subsequent processes and,
ltimately, classification performance Xie et al. (2021). The absence

of denoising techniques may impede the extraction of meaningful
9 
information from raw field-collected audio data, particularly in the con-
text of ML-based methods. However, while the removal of noise may
enhance efficiency by reducing the overall volume of data, excessive
emoval (cleaning or filtering) may result in the loss of crucial infor-
ation from the original signals (Napier et al., 2024). Furthermore,

this is a less significant concern in the context of DL-based methods,
which tend to be more resilient to noise (Brown et al., 2017). Therefore,
rather than filtering out environmental noises during the acoustic pre-
rocessing stage, we recommend saving them for further analysis, as
e have done. The potential benefits of integrating environmental noise

into bioacoustic analysis with DL models lie in the development of more
obust models that are closer to real-world conditions, even if it means a

reduction in performance. Therefore, CNNs and especially transformer-
based models seem to have the potential to achieve reasonable accuracy
in detecting and classifying bee buzzing amidst other environmental
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Fig. 6. The confusion matrices depict the number of audio segments correctly assigned
to each bee identity (diagonal elements) versus those incorrectly assigned (non-diagonal
elements) by the best transformer model (MAE-AST combined with SpecAugment, RT,
Mixup, and pre-training) and the best CNN model (PANNs combined with SpecAugment,
Mixup, and pre-training). Cell color signifies the corresponding count (log-transformed)
of predicted audio segments, ranging from black (indicating zero predicted audio
segments) to lightest blue (representing all audio segments correctly predicted). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

noise sources.
A recent alternative for dealing with excessive environmental noise

is automated noise reduction using DL models, initially tested on birds
(Zhang et al., 2024). With these models, it is possible to achieve a sig-
nificantly shorter average noise reduction time for the test set compared
to traditional bioacoustic noise reduction methods (Priyadarshani et al.,
2016; Brown et al., 2017). However, automated noise reduction with
DL models relies heavily on a large number of labeled, clean recordings
for model training (Zhang et al., 2024). As far as we know, there is
a lack of audio datasets of noise-free bee buzzes. Therefore, further
studies must first address the lack of clean datasets before applying DL
models for automated noise reduction.
10 
4.3. Not only data imbalance but especially small data sets are the main
challenges limiting the performance of transformer models

In general, the performance of the best transformer model at rec-
ognizing bee species based on acoustic cues from their buzzing sounds
is reasonable, with accuracies exceeding 80%. However, this success is
tempered by a persistent problem in our audio data set, namely data
imbalance, which mainly affects the underrepresented bee taxonomic
classes. Data imbalance is a significant factor that affects the stability
and effectiveness of not only Transformers, but all ML algorithms
(Chawla, 2010; Fundel et al., 2023). Imbalanced data can significantly
skew the performance of classifiers, leading to a prediction bias in favor
of the majority class (Wang et al., 2016). Nevertheless, class imbalance
is a common occurrence in real-world data sets, especially when it
comes to species abundance, which naturally varies among species,
locations, and seasons (Fundel et al., 2023). Thus, this bias is inherent
within our system since bees spontaneously visit the flowers at different
frequencies, and the local availability of individuals per species also
naturally varies. On the other hand, imbalanced classifications pose a
unique challenge for predictive modeling, as most ML algorithms for
classification assume an equal number of examples for each class. This
often results in models with poorer predictive performance, especially
for the minority classes. This is a critical issue because in some cases
the minority classes are very important, making the problem more
sensitive to classification errors within that class. Despite the difficulty
posed by our inherently imbalanced dataset, we preserved the diversity
and balance we found in the field to better reflect the actual species
diversity, even if it meant sacrificing performance in our ML models.

In our specific case, the majority of classes are those of bee species
commonly found in blueberry flowers and most relevant to crop pol-
lination (Cortés-Rivas et al., 2023a,b). While these bees are frequent
visitors to the flowers, they can contribute differently and even ad-
versely to blueberry pollination (Cortés-Rivas et al., 2023a,b). For
example, although honeybees, bumblebees, and some wild solitary
bees are the majority classes here, bumblebees and some wild solitary
bees using floral sonication behavior contributed more to blueberry
pollination (i.e. pollen grain transfer to floral stigmas) than honeybees
and other non-sonicating wild species (Cortés-Rivas et al., 2023a,b).
Therefore, the effect of class imbalance is somewhat reduced in practice
because the most frequent flower visitors are also the most relevant
agents for both functional roles, whether they are effective pollinators
or pollen/nectar thieves. As a result, while Transformer models may
not excel at classifying all bee species, they show better performance at
discriminating among the set of most frequent bee species for blueberry
pollination.

A particular problem with transformers is that they require large
amounts of training data to achieve higher performance than standard
CNNs (Dosovitskiy et al., 2021). Indeed, many transformer models
experience a significant drop in performance when working with in-
sufficient training data, like the one we used. In other words, detection
transformers require a large amount of data, characterizing them as
data-hungry models (Wang et al., 2022). However, acquiring and la-
beling a training data set of audio recordings for multiple bee species
can be a long and tedious task (Christin et al., 2019). Labeled train-
ing datasets rely on human judgment, as we still rely on traditional
taxonomic recognition of bees to validate our model classifications. In
addition, audio data collection is limited to the intrinsic availability
of bee species, thus limiting the number of samples for less common
species (see also Ribeiro et al. (2021) and Ferreira et al. (2023)).
To alleviate the need for data-intensive training examples, several
solutions have emerged in recent years and are readily available, the
most popular being importing sounds from public datasets, crowdsourc-
ing, transfer learning, and data augmentation (Christin et al., 2019).
Since labeled training datasets depend on the traditional taxonomic
recognition of bees, which relies on human judgments to recognize
morphological features at the microscopic level (Gradišek et al., 2017),



A.I.S. Ferreira et al.

e

T

r
p
s
d
r

o

b

C

r

d
b

s
i
b
a

o
a

p
o
f

b
w

m

Ecological Informatics 86 (2025) 103010 
and specialized public datasets are scarce, the use of data augmentation
seems to be the most likely option to mitigate this data-intensive
problem. Indeed, data augmentation played an important role in in-
creasing the diversity and robustness of our dataset. Among all the
pre-training we used, data augmentation regularization (SpecAugment,
Random Truncation, and Mixup) may contribute the most to fully
exploit the potential of transformers for the acoustic recognition of
bee species. While excessive data augmentation does not necessarily
enhance the performance of CNNs, transformers exhibited improved
performance when all data augmentation methods were applied, com-
pared to using the algorithm alone. This may be because the data
augmentation techniques work together to alleviate the intrinsic need
for few-shot of transformer models (Kumar et al., 2019, 2020; Ghani
t al., 2023). Thus, our results underscore the greater importance of

data augmentation techniques to alleviate the data-intensive nature of
ransformer compared to CNN models.

While overparameterization can lead to overfitting, data hunger
eflects a model’s need for substantial training data to achieve strong
erformance. Insufficient data relative to model complexity often re-
ults in overfitting. Data hunger emphasizes the necessity for large
atasets to train models effectively. In contrast, overparameterization
efers to a model containing more parameters (weights) than are essen-

tial for the task at hand (Wang et al., 2022). Our Transformer models
exhibit data hunger, as we discussed before, but overparameterization
is less of a concern. Recent studies on scaling laws indicate that
while parameter count is crucial, model performance depends on a
finely tuned-relationship between parameters, data, and computational
resources (Kaplan et al., 2020; Rosenfeld, 2021; Bahri et al., 2024). Our
Transformer-based models, with 87–99 million parameters, were sim-
ilar in size to our best-performing CNN baseline (PANNs), which con-
tained 81 million parameters (see Table 1). This alignment suggests that
ur Transformer models performance gains were due to architectural

innovation, not just over-parameterization. This finding is supported
y results from the Vision Transformer (ViT; Dosovitskiy et al., 2021),

which underlies our Transformer models. Architectural refinements,
paired with increased data usage, have enabled Transformers to surpass

NNs on various computer vision tasks (Dosovitskiy et al., 2021).
While model performance predictably scales with model size, it requires
careful balancing of model complexity, dataset size, and computational
esources (Thompson et al., 2020). Given our limited and imbalanced

dataset, we employ preprocessing techniques and data augmentation
to facilitate efficient learning. This approach demonstrates that Trans-
formers can perform well even with limited data and resources if an
appropriate training strategy is applied. We mitigated overfitting by
balancing model capacity with dataset size and enhancing sampling ef-
ficiency through data augmentation. The comparable parameter counts
across architectures, combined with our preprocessing efforts, suggest
that the performance gains were due to the transformer’s inductive
biases, which are particularly well suited for acoustic bee detection,
rather than parameter counts alone (see also Dosovitskiy et al. (2021)).

4.4. The field of bee sound processing evolves in tandem with cutting-edge
research

Recently developed ML models, such as DL, have not yet fully
realized their potential to automate the acoustic recognition of bee
species. Transformers have achieved a maximum Macro F1-score and
accuracy of 64% and 82%, respectively. However, these cutting-edge
models combined with sophisticated data pre-training and the avail-
ability of larger data sets outperformed CNNs, the previous best model
for automatic bee species recognition. CNNs, on the other hand, had
recently outperformed classical ML models (Ferreira et al., 2023). Thus,
the success of various DL techniques has been demonstrated in the
evelopment and implementation of speech recognition systems for
ioacoustic applications worldwide (Rodrigues et al., 2021). Recent
 i

11 
research suggests that task-specific model designs and training ap-
proaches for audio event recognition can achieve performance levels
comparable to complex architectures used in other domains (Stowell,
2022; Ghani et al., 2023). Nevertheless, as important as it is to im-
plement models from other domains, it will be necessary to develop
pecialized models and training schemes that use ambient sounds,
ncluding real-world noise, to improve the accuracy and reliability of
ioacoustic analysis in more specific domains. There is no one-size-fits-
ll model for pattern recognition in DL, and the choice of the optimal

approach depends on the specific problem and the characteristics of a
particular dataset. As a future direction for new research, the possibility
of domain-specific pre-training for bioacoustics is likely to be explored.

Furthermore, while we relied on pre-training techniques, such as
data augmentation, to address the challenges of bioacoustic classifi-
cation of bee species, there is an opportunity to further improve the
performance of neural networks by pre-training them using public
repositories containing recorded data of bee buzzing sounds. To our
knowledge, there has been no research on pre-training Transformers
using publicly available repositories tailored to the unique charac-
teristics and challenges of bioacoustic data. Therefore, computational
bioacoustics would benefit greatly, especially those based on extensive
in-field human audio data collection. Despite these potential benefits,
online public data platforms must meet minimum standards for reliable
data curation and sharing. Data curation plays a critical role in ensuring
this reliability by organizing, cleaning, and maintaining the data to
improve its accuracy, consistency, and usability. Proper curation helps
mitigate errors, reduce bias, and ensure that the dataset remains rele-
vant and trustworthy over time (Freitas and Curry, 2016). With these
precautions, this avenue of investigation could lead to improved models
with a better understanding of the acoustic patterns specific to the field
f bioacoustic classification of bee species, ultimately improving the
ccuracy and effectiveness of bioacoustic classification tasks.

By exploring these avenues, future work could improve the appli-
cability and performance of, for example, few-shot learning strategies.
The use of few-shot learning strategies for bee pattern recognition
could be a valuable approach, especially when dealing with classes that
have a limited number of samples. Few-shot learning techniques are
designed to train models on tasks with a small number of examples,
making them suitable for scenarios where the availability of training
data is low (Ghani et al., 2023). In the context of bee species recogni-
tion, where classes are highly imbalanced, such as Cadeguala albopilosa
with only five samples (see Table 2), the use of few-shot learning
methods can have potential benefits, such as improving generalization,
adaptability, data efficiency, and transfer learning. However, it is im-
ortant to consider potential challenges and limitations, such as the risk
f overfitting due to limited data and the need for careful selection of
ew-shot learning methods.

Deep learning has revolutionized the field of artificial intelligence
y providing sophisticated models for a wide range of applications
ithin bioacoustics (Stowell, 2022). However, DL models are typically

black box models where the reason for the predictions is unknown
(Hassija et al., 2024). Consequently, model reliability is questionable
in many circumstances (Qamar and Bawany, 2023). Nevertheless, bioa-
coustic studies have explored which acoustic features may be relevant
for taxonomic recognition of bee taxa, from which we can speculate
about those that may also be important for DL model learning. A key
acoustic feature is the particular buzzing frequencies, which tend to
vary among different bee genera and species, with bee species differing
in the frequency of floral vibrations even when visiting the same plant
species (Rosi-Denadai et al., 2018; De Luca et al., 2014; Vallejo-Marín,
2019). Buzz pollination vibrations contain a fundamental frequency
(typically 100−400 Hz) and often many higher frequency harmonics
of rapidly decreasing magnitude (Szyszkowski and King, 1993). The
frequencies generated during buzzing vary less than their duration,

ainly because the frequency depends on inherent physical and phys-
ological properties of the vibration-generating bee flight muscles and
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their transmitting mechanisms, i.e. bee size and flight frequency, stami-
nal resonance (Burkart et al., 2011). Other energy-related acoustic
arameters of sound may be relevant to the task of acoustic identifi-

cation of bee species, such as sound amplitude. However, amplitude
epends upon the measurement procedures (e.g., recorder model and
onfiguration, distance from the focal object) and does not necessarily
orrespond to vibration amplitude (Gradišek et al., 2017; De Luca et al.,

2018). Therefore, since bee species tend to have different floral buzz
and wingbeat frequency patterns, we would expect that fundamental
frequency and harmonics can be the main features that help both
CNN and transformer models to assign a buzzing sound to a given bee
species. This assumption needs to be further tested.

Finally, one might ask whether these models have some practi-
cal value. For applications of AI-based approaches in fields such as
medicine, high accuracy thresholds are essential because of the poten-
tial impact of a single error (Begoli et al., 2019; Chua et al., 2023).
However, the context is different for species recognition in ecological
tudies, such as our work on blueberry pollinators. There is gener-
lly more uncertainty in this domain, and the tendency is to capture

patterns and insights within complex, variable systems rather than
o make precise predictions on a case-by-case and context-dependent

basis (Catford et al., 2022). This uncertainty may be due to large
mounts of unexplained variance resulting from unmeasured complex
nteractions between abiotic and biotic factors, or large amounts of
andomness and noise in the data (Møller and Jennions, 2002; Fischer,

2019). Our Transformer model may not reach the ML-level accuracy
tandards found in more deterministic fields, but it still provides valu-
ble predictions about pollinator identity. Given the challenges of data
vailability and the inherent variability of the ecological systems in
hich species are inserted (Fischer, 2019), the performance of these

Transformer models represents a significant step forward. Thus, while
the performance of the algorithms may not meet medical standards,
they are practical and useful in the context of ecological interactions,
helping to address important questions about pollinator contributions
to crops such as blueberries, where absolute precision is less important
than identifying general trends and interactions.

In summary, we compared the performance of the newly discovered
transformer models with the current best models for automatic recog-
nition of blueberry-pollinating bees by their buzzing sounds. Trans-
formers demonstrate a superior ability to capture complex patterns
n bee buzzing sounds, but their performance benefits greatly from
ppropriate pre-training and data augmentation techniques. Our find-
ngs indicate that neural networks using transformers, powered by
 combination of pre-training techniques and robust data augmenta-
ion, outperformed the conventional CNNs in automated taxonomic
ecognition of bee species visiting flowers of cultivated blueberry in
hile. Nonetheless, there is still potential for greater enhancement

n the performance of transformers. Further studies combining pre-
training with data augmentation will be crucial to increase the diversity
and robustness of training data for acoustic bee species recognition.
Finally, we would like to emphasize that our pipeline is not limited
to the acoustic recognition of bee species and could be applied to
other domains. One particularly promising avenue for its use is in the
sound classification of other flying insects, where a robust model like
ours may offer advantages over other approaches that are constrained
by the limitations of other modeling approaches for in acoustically
distinguishing species.
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