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Abstract

In this paper, the recognition of pollen bearing honey
bees from videos of the entrance of the hive is presented.
This computer vision task is a key component for the au-
tomatic monitoring of honeybees in order to obtain large
scale data of their foraging behavior and task specializa-
tion. Several approaches are considered for this task, in-
cluding baseline classifiers, shallow Convolutional Neural
Networks, and deeper networks from the literature. The ex-
perimental comparison is based on a new dataset of im-
ages of honeybees that was manually annotated for the pres-
ence of pollen. The proposed approach, based on Convolu-
tional Neural Networks is shown to outperform the other
approaches in terms of accuracy. Detailed analysis of the
results and the influence of the architectural parameters,
such as the impact of dedicated color based data augmen-
tation, provide insights into how to apply the approach to
the target application.

1. Introduction

Bees play essential role in pollination, which is crucial
for agriculture and ultimately for human existence. They
also behave in very complex social way that includes hier-
archy, roles, schedules and interactions. In order to under-
stand these behaviors, very careful observation and regis-
tering needs to be done. With the use of recent technology
developments, this observation is not only feasible, but pos-
sibly even broader, making easier to find and register de-
tailed individual and group conducts.

The interest on observation of honey bees activities

within and outside the colony began to be documented since
nearly a century ago [17]. For the most part, the traditional
technique remains human observation and manual annota-
tion, as this is the only approach that enables the extrac-
tion of a wide range of behaviors and is readily available
to bee specialists. It is a very time consuming and expen-
sive task that requires long periods of observation and some-
times specific expertise in order to be meaningful. Thus, im-
portant insights may still missing to be observed or demon-
strated due to lack of data. Computer vision and machine
learning techniques provide the framework needed to an-
alyze the insects behavior automatically and provide new
insights [3].

The observation of Honey Bee hives is of interest for
multiple applications. Bee keepers, for instance, might
get better understanding to prevent sickness in the colony
caused by external factors that can be recognizable in video
[19]. Early detection of poisonous materials that bees are
bringing as fraudulent pollen [6] or diagnosing the health of
the hive [8]. Furthermore, biologists can understand better
the pollen scheduling and individual roles within the hive,
which can be linked to DNA individual composition.

Concept recognition from images have been a matter of
very fast and growing performance in the last decade. Sev-
eral methods have been proven to be effective at this task.
In particular, Convolutional Neural Networks (CNN) [15]
have been shown to learn both low-level and higher-level
features without requiring explicit supervision.

In this work we present a study and comparison of dif-
ferent techniques for detection of pollen in video. Classi-
fiers such as KNN, SVM and Naive Bayes were used as
baseline. Convolutional Neural Networks were tested us-
ing different parameter configuration: shallow models of
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Figure 1. Example of capture: A bee with pollen entering the
colony and other bees

one or two convolutional layers, and deeper models using
architectures from the literature such as VGG16, VGG19
and ResNet50. As color is a priori a relevant feature for
the presence of pollen, a color feature specific to pollen was
also considered.

The organization of the paper is as follows: in Section
2, related work will be presented; in Section 3, we will de-
scribe the proposed approach and the experimental setup.
In Section 4, the results will be presented and discussed,
before the Conclusion in Section 5.

2. Related work

Several studies have discussed the use of video for moni-
toring bees or insects. In [4], [5], for instance, advantages of
using video instead of invasive methods such as RFID tags
are illustrated. They proposed the use of computer vision
and machine learning algorithms for detection of foraging
activities at individual level, placing individual tags to bees
to track the schedules of departures and arrives within the
colony. In [19] the use of machine learning is first used for
detection of Varroa mite, which recognizes spots of color
red in the bodies of the bees. In [22] computer vision is
used for automatic behavior analysis. In [13], behavior of
flies is analyzed based on their temporal trajectory.

2.1. Pollen recognition

Recognition and classification of pollen have been
widely studied at a microscopic scale (i.e. by observing
only the collected pollen in a microscope). For instance,
[16] and [14] aim at detecting pollen on air for allergy di-
agnosis. In [6], a microscopic scale study was performed to
detect fraudulent pollen getting in the colony.

At macroscopic scale (i.e. when observing the bees bear-
ing the pollen), very few studies have been performed so
far. In [3] a system is presented that targets the embedded
Rasperry Pi device with a camera of resolution 1280x720

for recording inside the hive. A dataset composed of 121
pollen bearing bees and 770 non pollen bearing bees was
used. A Mixture of Gaussians (MOG) model was used for
segmenting the background color and variance and eccen-
tricity of color was used as light-weight features for classi-
fication by a Nearest Mean Classifier. This approach was
reported at 88.7% accuracy. A codebook approach using
VLAD descriptors [12] computed from color MSIFT fea-
tures [2] reached 92.1% accuracy on average using 200
training samples.

2.2. CNN for visual classification

During the past few years the success of Convolutional
Neural Networks (CNN) for image classification have pro-
moted this approach as the state of the art method for visual
classification [15]. The use of CNNs for classification of
images have even surpassed human performance on a few
applications [10]. The rise in computer power has enabled
its application at large scale. However there is still a very
active discussion on what is the optimal architecture one
should use. Although improvements were shown using very
deep CNNs [21], recent experimental results suggest that
much shallower architectures may achieve similar results
[11].

To the best of our knowledge, no previous work has at-
tempted to apply CNNs for pollen detection, although sev-
eral points argue in favor of their fitness to the problem at
hand: invariance of the convolution operation to process
pollen balls at various locations in the image, learning of
feature maps that take into account both color and geometry,
flexible and powerful architecture that allows reusing parts
of the network to adapt the models to a new experimental
setup without having to retrain the models from scratch.

3. Problem statement and data collection

This work is motivated by the automatic monitoring of
bees to obtain a large amount of behavior information for
long-term tracking of the colony health and large-scale sci-
entific studies. The objective of detecting the presence of
pollen is of prime importance to assess the success of forag-
ing tasks and study the division of labor amongst bee work-
ers. One difficulty of such detection lies in the current ne-
cessity to retrain the models for different types of bees and
experimental setup. Indeed different species of bee can hold
the pollen balls differently, and the bee and the pollen colors
can vary significantly depending on the type of flowers that
are foraged, as well as depending on the illumination and
viewing conditions. The amount of training data is there-
fore highly dependent on the investment by bee specialists
in annotating a representative sample of the conditions en-
countered.



Figure 2. Video capture system used in the field: overview of the
system installed at the entrance of the colony and detail on the en-
trance. (1) bee hive, (2) camera, (3) entrance ramp, (4) protection
against direct sunlight.

3.1. Video capture system

The video capture system is designed to observe the
ramp through which all foraging bees must pass to exit or
enter the colony. Figure 2 shows the system used in this
work. We used a 4 Mpixels GESS IP camera connected to
a networked video recorder configured at 8Mbps for con-
tinuous recording. A transparent acrylic plastic cover lo-
cated on top of the ramp enforces that the bees remain in
the focal plane of the camera. Due to constraints to avoid
interfering with the bee biological cycles, only natural light
is used. A white plastic diffuses the natural light received,
and a black mask is put around the camera to reduce the
direct reflections that could be visible on the ramp cover.
The videos where acquired in June 2017 at the UPR Agri-
cultural Experimental Station of Gurabo, Puerto Rico. The
two videos used in this work are of one hour duration and
were recorded at 10 a.m. and 1 p.m. to take into account
different lightings.

3.2. Dataset

As part of the contributions of this work an anno-
tated dataset has been released for public access (https:
//github.com/piperod/PollenDataset). This
dataset contains high resolution images of pollen-bearing
and non pollen-bearing honeybees as shown in Figure 4.
These images were extracted from the videos captured us-
ing the procedure described below.

Using in-house annotation system based on [20], the
videos were manually annotated using a protocol defined
to avoid near-duplicate samples and ensure a balanced and
representative dataset. For each video of one hour, the video
was visualized in chronological order and the annotator in-
structed to stop as soon as a pollen bee was entering the
ramp. The annotation would then be performed as the bee
reached the middle of the path leading to the entrance. A
second bee without pollen would be annotated on the same
frame to account for similar lighting conditions and ensure

Figure 3. Misaligned samples for Pollen and Non Pollen bearing
bees.

a balanced dataset. Since the ramp contains dozens of non
pollen-bearing bee at all times, this could be done with-
out repeating the same individual in a similar position. The
pollen bee would not be annotated again in its trip toward
the colony to avoid duplicates. The annotation consists in
the position of the bee’s thorax, its orientation angle, and
the presence of pollen, as illustrated in Figure 1, where part
of the annotation system is visible.

The dataset used for the recognition was created by ex-
tracting the individual images of the bees, with their re-
spective pollen/nopollen labels. The orientation of the bees
was compensated to ensure in all image samples that the
bee is facing upwards. With this information, the image
dataset was built fixing the size of the cropping rectangle
to 180x300 pixels, such that the annotated thorax position
appears centered at coordinates (90,100) and that the bee is
fully visible.

It can be noted that the orientation could be inferred au-
tomatically by using bees marked with coded tags such as
[4] or other automatic alignment approach. This was not
done in the present study to focus on the evaluation of the
intrinsic difficulty of the pollen recognition task using good
quality manually annotated data.

A total of 810 bees images were sampled by the anno-
tators, half of them labeled as Pollen bearing and the other
half as Not Pollen. This raw dataset was curated by a dif-
ferent person, who removed a total of 100 samples that had
misplaced annotations with misaligned samples (Figure 3).
A few slightly misaligned samples judged non ambiguous
by the curator remained (see for instance Figure 13). The
resulting dataset used in this work contains a total of 710
samples (354 Pollen and 346 Not Pollen).

To our knowledge, this dataset is the first public dataset
of this type and size, i.e. using natural light, good resolu-
tion imaging and manual annotation of the bee position and
orientation.

4. Classification approaches

Three different approaches have been considered in this
work: direct classification using baseline classifiers, shal-



Figure 4. Pollen and Non Pollen bearing bees.

Figure 5. Non Pollen Bearing bees (top) and Pollen Bearing Bees
(bottom). With their respective feature extraction. (Color Extrac-
tion left and Gaussian Blur right)

low Convolutional Neural Networks (CNN), and deep CNN
from the literature. For the baseline classifiers, KNN, Naive
Bayes and SVM with linear and RBF kernels were used.
For the CNN, shallow networks with one and two convolu-
tional layers were considered. Deep architectures such as
VGG16, VGG19 and ResNet50, followed by a dense layer
to fit the Pollen/Not Pollen classes were also tested.

4.1. Data preparation

As pollen balls have an obvious color component, an ad-
hoc pollen color feature map (hereafter refered to as Color)
was considered as an addition to the RGB images. The
images were converted to Hue Saturation Value colorspace
(HSV) and the following Gaussian model was applied:
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with 03, = 0.1, 0, = 0.8, 0, = 0.3, g5, = 0.05, 0, = 0.05
and o, = 0.8 determined empirically to highlight most of
the pollen balls in the dataset.

The Color feature map was also smoothed with a Gaus-
sian blur of o= 8 pixels to produce the Gaussian feature
map.

The RGB image, Color and Gaussian feature maps were
normalized and resized to match the classifier architectures
as described below.

4.2. Baseline Classifiers

Three models of supervised classification (KNN, Naive
Bayes and SVM) were applied to the three feature map im-
ages described previously (RGB images, Color and Gaus-
sian). Before feeding the classifiers, each image was nor-
malized to have a [0,1] range and resized to half size
90x150.

Given the high dimensionality of the input data and the
dataset size, the use of Principal Components Analysis was
also evaluated. We ran experiments keeping 160, 80, 40, 20,
10, 5, and 2 dimensions with respectively 98%, 95%, 87%,
T7%, 65%, 53% and 39% explained variance for Gaussian
features, and 88%, 78%, 56%, 31%, 20% and 15% ex-
plained variance for Color. RGB showed similar explained
variance as Color.

Knn. This supervised algorithm, known as the K nearest
neighbor algorithm, outputs directly class membership. An
object is classified by a majority vote of its neighbors, with
the object being assigned to the class most common among
its k nearest neighbors. If £ = 1, then the object is simply
assigned to the class of that single nearest neighbors. In the
experiments, £ = 3 was used.

Naive Bayes. Naive Bayes methods are a set of super-
vised learning algorithms based on applying Bayes theorem
with the naive assumption of independence between every
pair of features. We used the the implementation available
in [23] with a Gaussian distribution model.

SVM. Support Vector Machines (SVM), with both lin-
ear and radial basis functions (RBF) were considered in this
study, for the ability to separate hard instances in data. We
used default parameter C' = 1 for both and v = 1 /n for the
RBF where n is the dimensionality of the input data.

4.3. CNN Classifiers Architectures

We considered shallow CNNs constructed on the fol-
lowing basic module: sequence of 2d-convolution, relu-
activation, max-pooling. The complete architecture is build
as the sequence of 1 or 2 basic modules, followed by flat-
tening and a dense layer with 2 outputs. Depending on the
number of basic modules, we will refer to this architecture
as 1 or 2 layer model. The parameters to be specified were
the number of kernels, size of kernels, pooling size and step,
and units of the summarizing layer.

The deep CNN architectures, VGG16, VGG19 and
ResNet50 were pre-trained using the publicly available
weights from their respective sources. The top layer of each
architecture was replaced by a binary output dense layer be-
fore training the whole network on the pollen task. The in-
put images were used at their initial size of 180x300 pixels
to take into account the deep architecture with multiple sub-
sampling layers.



S. Results
5.1. Experimental setup

The experiments were divided in three different ap-
proaches: baseline classifiers, shallow CNN and deep CNN.

Stratified split was used to create the training (70%) and
validation (30%) datasets. Accuracy was the metric consid-
ered in all the approaches to measure performance.

All the experiment were performed using Scikit-learn
[18], Scikit-image [23], OpenCV [1] and Keras [7]. They
were run on a 6-core Intel Xeon E5 Core i7 with 64 GB
RAM.

5.2. Baseline classifiers

The results of the classification task using KNN, Naive
Bayes and SVM are summarized in Table 1. SVM RBF
classifier with PCA reached the best accuracy using the
Gaussian feature map at 91.16%. The table shows the best
results according to the dimensions kept after PCA was per-
formed. In general PCA showed positive impact on per-
formance. In some cases accuracy improved up to 30%,
suggesting in these cases that the high dimensionality gen-
erated overfitting. Best results were obtained with less than
80 dimensions. The running time for each classifiers was
dominated by the PCA computation, therefore minor im-
pact on time was observed when running the classifiers with
different dimensions.

The lowest accuracy was obtained using the raw RGB
Image. Consistent improvement was observed when us-
ing the Color features combined with the Gaussian features.
This suggests: first, that the intuitive approach of perform-
ing pollen color detection actually enhances relevant infor-
mation; second, that spatial filtering also has a positive ef-
fect. The CNN architecture unifies these two aspects (color
selection and spatial filtering) in a form that is trainable,
which we discuss next.

5.3. Shallow models
5.3.1 Influence of the parameters

To choose the best hyper parameters for these architectures,
parameter exploration was performed. Figures 6, 7 and 8
summarize the effect of different choices of parameters on
the performance of the network in our particular problem.
The parameters tested were the number of kernels, size of
kernels, pooling size, step size and units of the summarizing
layer.

The results obtained show accuracies varying from 50%
to 96%. The choice of larger kernel sizes reveals a better
performance on both architectures tested. This suggests that
a larger kernel size is necessary on such shallow network to
cover enough of the pollen ball to be able to differentiate it
from other parts of the bee.

KNN NB SVM  SVM rbf
Without PCA
Image (RGB) 7792 7718 7731  50.66
Color 79.54 7954 8234  59.35
Gaussian 84.84 79.25 82.78  58.62
Training time 40-60s 5-10s 60-80s 140-160s
With PCA (Best dim)
RGB (80 dims) 80.73 7711 7745 73.04

Color (20 dims) 8743 7779 8279  89.85
Gaussian (80 dims) 84.60  77.69 84.79 91.16

Training time 81s 81s 81s 81s

Table 1. Accuracy of baseline classifiers with and without PCA
preprocessing, using different feature map images as input. Only
best results are shown based on different dimensionality reduction.
For each approach the range of total computing time for the train-
ing is shown (including the PCA preprocessing when used).

Approach Acc  Architecture Time per
(f.k,p,s,u) epoch (s)
1-Layer 96.4 (4,7,8,2,15) 10-25s
1-Layer + Color 952 (4,7,8,1,10)  45-60s
2-Layer 964 (8,1,8,1,15) 15-30s
2-Layer + Color 952 (4,7,8,1,15)  55-70s
VGGI16 87.2 see[21] 1300-1400s
VGG19 90.2 see [21] 1650-1750s
ResNet50 61.7 see[9] 1700-1800s

Table 2. Results: Shallow Architectures Accuracy (f=filters,
k=kernel size, p=pooling size, s=pooling step/stride, and u=units)

The use of large pooling size combined with small step
sizes produced the best performance. More generally, larger
step sizes yielded very poorer, even coupled with larger
pooling sizes. The reduction of resolution linked the pool-
ing step size had a marked detrimental effect.

The number of kernels did not show a clear impact in
performance, in terms of the best performing networks, al-
though higher numbers (8 and 16) had better average accu-
racy. Having more diversity in the computed features there-
fore seemed to help, and did not lead to marked overfitting.

5.3.2 Comparison to baseline classifiers

For this evaluation, best models were selected for each shal-
low architecture. The parameters and performance are re-
ported in Table 2, as well as their ROC curve in Figure 9.

The 2-layer model showed similar performance than the
1-layer model, when using small step sizes, getting up to
96.4% in the best configuration. The 1-layer models for
both RGB Image and color feature map inputs reached the
same accuracy.

It is noteworthy that the Color feature map as input did
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Figure 8. Shallow-CNN performance by Number of Filters used

not improved the performance as it did for the baseline clas-
sifiers. By looking at Figure 10, which represents the per-
formance of the same configuration on the different features
map, we can nevertheless confirm the relevance of the in-
formation it conveys, as we notice the learning curves of
the approaches using the Color feature start faster. The net-
works trained only from the RGB images has also higher
variability, but if given enough epochs, reaches the same
performance as when using Color. This suggests the CNN
architecture was able to learn how to extract this informa-
tion during the training without the need of human defined
ad-hoc model.

= %
‘
/
L
‘
%
08 //
3
© ~
o P
o 06 4
> Ve
= v
0w &
o e
o o4 ¥
) A
=1
= ,»~  —— One Layer
‘
02 o One Layer + Color
/
P4 —— Two Layers Layer
d —— Two Layer + Color
00+ . . . .
0.0 02 04 06 08 10

False Positive Rate

Figure 9. Roc Curves for Shallow approaches

0.9 1
0.8 4

M’NN

Accuracy

- One Layer

Two Layers
— One Layer + Color
05 4 ~— Two Layer + Color

0 25 50 75 100 125 150 175 200
Epochs

Figure 10. Learning curve of One and Two CNN layers model.

5.4. Performance on a lower resolution dataset

To evaluate the performance of the proposed approach in
a lower resolution scenario, we applied the best configura-
tions for 1-layer and 2-layer networks to the dataset used in
[3]. This dataset is composed of 121 samples of pollen and
770 samples of non-pollen bearing bees. Image sizes are
not fixed, but are of the order of 50x70 pixels (See Figure
11).

We trained and tested with the same amount of samples
for each class. Performing 20 random splits using 80% for
training and 20% for testing on each split.

The usage of as little as 50 samples for training had
a detrimental effect on the 1-layer shallow network and
showed poor generalization. However as the number of
samples raised, the results outperformed the approach using
VLAD descriptors based on fixed MSIFT features reported
in [3]. The 2-layers shallow network outperformed the two



Figure 11. Pollen and Non Pollen bearing bees from dataset [3].

Training Size 1-Layer 2-Layers VLAD [3]
50 72.4 87.9 87.42
100 91.6 92.5 90.46
200 94.6 95.9 92.14

Table 3. Performance of shallow networks compared to SVM
classification of VLAD descriptors reported in [3], on the same
dataset.
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Figure 12. Learning curve of deep architectures

other approaches.

5.5. Deep models

By using the deep models based on VGG16, VGG19 and
ResNet50, results were slightly lower than the best shallow
architectures discussed before on our dataset. Because of to
the pre-trained weights, faster learning was observed since
only 5 epochs already showed a sustained accuracy over
88% , in contrast with the 70 epochs necessary to obtained
the same results in a shallower network. Despite that ad-
vantage, due to the much larger number of parameters and
the deeper architecture, only 25 epochs could be trained as
training time already exceeded the time to train the shallow
models from scratch.

The learning curves of the best architectures tested,
shows that the use of the extracted feature dataset (Color)
improves the performance and reduces the variability in the
validation. Since very shallow models are considered, it

takes up to 50 training steps to start showing results upper
than 85% . Howeyver, since the number of trainable param-
eters are small the model require less time per training step
than the other approaches tested.

VGG16, VGG19 and ResNet, were tested using 20
epochs on each one. Results shows that VGG19 have
slightly better performance than VGG16 after 25 epochs,
although it had a slower start. The maximum accuracy
reached by VGG16 was 90%. As for ResNet50 results
shows very poor performance in this application problem
with a maximum of 60% accuracy reached. A possible issue
may be the relatively small size of the images (180x300)
of the dataset compared to the typical applications of these
networks. Resolution reduction due to the pooling layers
may cause oversimplification of the spatial information in
the upper layers of the network, as was already noticed in
the shallow network with the effect of the pooling factor.

5.6. Qualitative analysis

Figure 13 shows a selection of the classification results
for the best shallow architecture (1-Layer): the samples that
were correctly classified with the most confident prediction
for both classes, as well as all the 7 samples incorrectly clas-
sified.

From this figure, it seems that an imprecise localization
of the bee is an important factor that may lead to an incorrect
classification, as 3 out of 7 miss predictions have a clearly
bad centering or incomplete angle compensation. Since
manual dataset annotation is a long and tedious task, such
approximations are to be expected when building a large
dataset, and are representative of issues that end users may
face when refining the models for a particular experimental
setup. Such misalignments are also expected from auto-
matic bee detection algorithms. As a result of this study,
this suggests that in future works, special attention should
be paid to either refine alignment before classification, or
improve the robustness to this issue, for instance by using
data augmentation based on shifted images.

Another interesting observation is that the false negative
samples have smaller pollen balls than the true positive sam-
ples, which confirms the intuition that the reduced size in-
creases the difficulty of the classification.

6. Conclusion

We conclude from the results of this study that simple
CNN architecture performed better than pre-trained recent
CNN models and baseline classifiers for the task of recog-
nizing pollen bearing bees. We also observed that feeding
the CNN with task specific predefined features had an im-
pact on the learning curve but without a strong impact on
the final performance.

This study also uncovered that most incorrect predictions
using the best CNN network had actual issues in the align-
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ment of the bees, or presences of perturbations in the field of
view. Such imprecisions in the detection of the bees are in-
evitable in the context of manually annotated training sets.
For practical application of the pollen recognition on the
field, it therefore appears important to integrate automatized
management of misalignments to the annotation and recog-
nition processes in order to reduce this source of errors.

Although deeper architectures may have the potential for
improved performance, they did not actually perform bet-
ter than shallower architectures on this dataset and involved
longer computations. Indeed, by involving a large number
of parameters, they typically require much larger datasets.
In this respect, we point out that the size of the dataset used
represents an upper limit to the investment that could be
requested from an end user in terms of fully supervised an-
notation to refine the models for a specific system on the
field.

In order to evaluate how to improve the performance and
applicability in the field, it is therefore an interesting ques-
tion for future work, how larger-scale datasets with good
quality annotation could be created by leveraging the clas-
sifiers proposed in this study and automatized collection and
validation of bee images.
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