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Autonomous tracking of honey bee behaviors over 
long-term periods with cooperating robots
Jiří Ulrich1†, Martin Stefanec2†, Fatemeh Rekabi-Bana3†, Laurenz Alexander Fedotoff2,  
Tomáš Rouček1, Bilal Yağız Gündeğer4, Mahmood Saadat3, Jan Blaha1, Jiří Janota1,  
Daniel Nicolas Hofstadler2, Kristina Žampachů1, Erhan Ege Keyvan5, Babür Erdem5, Erol Şahin4, 
Hande Alemdar4, Ali Emre Turgut6, Farshad Arvin3, Thomas Schmickl2*‡, Tomáš Krajník1‡

Digital and mechatronic methods, paired with artificial intelligence and machine learning, are transformative 
technologies in behavioral science and biology. The central element of the most important pollinator species—
honey bees—is the colony’s queen. Because honey bee self-regulation is complex and studying queens in their 
natural colony context is difficult, the behavioral strategies of these organisms have not been widely studied. We 
created an autonomous robotic observation and behavioral analysis system aimed at continuous observation of 
the queen and her interactions with worker bees and comb cells, generating behavioral datasets of exceptional 
length and quality. Key behavioral metrics of the queen and her social embedding within the colony were gath-
ered using our robotic system. Data were collected continuously for 24 hours a day over a period of 30 days, dem-
onstrating our system’s capability to extract key behavioral metrics at microscopic, mesoscopic, and macroscopic 
system levels. Additionally, interactions among the queen, worker bees, and brood were observed and quantified. 
Long-term continuous observations performed by the robot yielded large amounts of high-definition video data 
that are beyond the observation capabilities of humans or stationary cameras. Our robotic system can enable a 
deeper understanding of the innermost mechanisms of honey bees’ swarm-intelligent self-regulation. Moreover, 
it offers the possibility to study other social insect colonies, biocoenoses, and ecosystems in an automated man-
ner. Social insects are keystone species in all terrestrial ecosystems; thus, developing a better understanding of 
their behaviors will be invaluable for the protection and even the restoration of our fragile ecosystems globally.

INTRODUCTION
Amid an emerging ecological diversity crisis, our biosphere is facing 
unprecedented losses in species richness and biomass (1–3). Among 
the most decimated groups are insects (4, 5), resulting in a severe 
pollination crisis (6). This harms not only our natural ecosystems 
but also our agricultural efforts in terms of crop production (7), 
which in turn can lead to economic inflation (8) and ultimately en-
danger the food security of our society (9).

Honey bees are the most important pollinator species, providing 
about 50% of pollination to pollinator-dependent crops (10). Because 
they are easy to breed commercially and can be centrally housed in a 
managed hive, they can potentially be used to compensate for the losses 
that we face across the thousands of other pollinator species (11). Their 
centralized way of living in large numbers as a “superorganism” means 
that complex self-regulation is required, and the process by which their 
collective decisions are made is often termed “swarm intelligence” (12). 
To date, we only understand a fraction of the mechanisms of their 
swarm intelligence; thus, a system that is capable of observing the be-
havior of honey bees can be a powerful tool to extensively study colony 
integration (13). The specific behaviors of the queen and the worker 

bees (Fig. 1, A and B) and comb-based activities are of interest, and 
they include, for instance, brood development (Fig. 1C) and other be-
haviors related to distributed self-organization and self-regulating 
feedback loops.

The pollination potential and the winter survival rates of honey 
bee colonies depend mainly on their population size and the health 
of the workers (14). Both winter survival and pollination potential 
can be studied in the brood nest, because all honey bees, and also all 
of their parasites, are (re)produced in this comb area (15). Ultimately, 
all worker bees hatch from the eggs laid by a single queen, a behavior 
known as oviposition behavior. Oviposition behavior is typically ob-
served in the central brood nest area (16) and is the most important 
factor in colony growth and reproduction (17). Many crucial aspects 
of the self-organization of the superorganism depend on the interac-
tions between the colony and the queen (18), mediated by the “queen 
court,” a group of worker bees of a certain age that perform essential 
tasks for the queen, such as feeding or cleaning her (19). Typically, a 
honey bee queen spends 99.99% of her life inside her hive, with the 
only exceptions being a few mating flights at the beginning of her 
adult lifetime and occasional swarming events in colony-level repro-
duction. Thus, using a system to study the honey bee queen and her 
interactions with worker bees and comb cells is of the utmost impor-
tance for developing a fundamental understanding of the core mech-
anisms of the honey bee colony (Fig. 1). Behavioral observation is 
particularly meaningful if the organisms being studied are observed 
in their natural context. Thus, systems that allow observations of 
queens within a fully functioning beehive are expected to yield better 
insights and fewer behavioral artifacts compared with controlled 
laboratory experiments. However, multifactorial models and noise 
interpretation are required for such hive-based observations.
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Fig. 1. The AROBA system is designed for autonomous focal observation and behavioral analysis in a honey bee colony. (A) Photograph of one side of a honey 
bee comb, with the queen and her court, surrounded by workers. (B) The queen (highlighted), marked with a fiducial marker, surrounded by her court (highlighted). (C) Pho-
tograph of a less crowded area of the comb showing different exemplary cell contents. (D) Schematic and photograph of the AROBA system, showing two modules 
placed on either side of the central observation hive. (E) Flowchart of the AROBA decision-making algorithm. (F) Generalization of movement trajectories of modules 
performing comb scanning operations for brood development monitoring and population level estimation. (G) Generalization movement trajectories of modules per-
forming queen tracking and court detection. (H) Generalization of movement trajectories of modules performing focal site observation for brood development moni-
toring at target sites. (I) Exemplary image frame during queen tracking. (J) Visually highlighted court configuration with detected court bees. (K) Detail of comb cells 
with egg and larva highlighted.
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From the late 18th century on, human observation has been the 
state of the art in ethology. For honey bees, this principle was pio-
neered by François Huber, who used specially designed observation 
hives in his work on honey bee behavior (20). Most prominently, the 
Nobel laureate Karl von Frisch (21) studied honey bees ethologically 
and, together with Nikolaas Tinbergen (22) and Konrad Lorenz (23), 
established ethology as a formal scientific discipline (24). Throughout 
the 20th century, ethological research relied on human observation 
and often qualitative behavioral analysis in laboratory settings (25, 26).

For systematically observing animals in general and specifically 
honey bee colonies, robotics can be an important enabling technology 
allowing studies to go far beyond the possibilities of human observers 
in classical ethology. However, it is crucial that such robotic systems 
observe natural behaviors without producing behavioral artifacts. 
Table 1 provides a set of constraints and design directives that must be 
taken into consideration to perform technology-driven ethology. 
These guidelines have informed and guided our robot design to create 
an autonomous machine for ethological honey bee research by con-
tinuously collecting data for key behavioral metrics (KBM).

Recently, the deployment of fixed-camera systems coupled with 
automated image analysis has expanded research capabilities, improv-
ing data quality and objectivity and allowing for longer observation 
times (27–30). Advancements in automated honey bee tracking meth-
odologies, pioneered by Feldman and Balch (31), have more recently 
been improved through convolutional neural networks (CNNs), thus 
enhancing automated (observer-independent) data collection and be-
havioral classification (32, 33). However, such fixed-camera systems 
face a critical trade-off when capturing entire honey bee colonies 
between generating unmanageable amounts of data and missing 

important detailed interactions because of limited resolution. A dedi-
cated subsection in the Discussion compares our Autonomous Robotic 
Observation and Behavioral Analysis (AROBA) system to other honey 
bee observation methods and technologies in the field, including 
“manual” observation methods that are common in bee ethology.

The key advantage of using a robotic system over a fixed-camera 
system is the presence of moving cameras on both sides of the hive in 
closer proximity to the comb. This offers multiple benefits: Mobile 
cameras can focus on what is currently important for the research, for 
example, continually creating close-up video recordings of the queen, 
of dancing bees, or of specific comb sections. This allows a higher im-
age quality than fixed cameras, with more pixels capturing the specific 
area of interest. In addition, an AROBA system is slimmer than fixed-
camera systems; thus, more hives can fit into the same laboratory 
space. This allows more repetitions of experiments and more control 
setups. Furthermore, the AROBA system actively exploits the fact that 
we observe processes that operate on different time and size scales in 
honey bee colonies: Fast-paced behaviors can be observed by con-
tinuous focus observations based on tracking individuals or groups, 
whereas interval-based sampling or scanning of the habitat for slow-
acting processes is also possible. However, intermediate or mixed strat-
egies can also be implemented, especially when multiple interacting 
robotic nodes are used. In addition, the AROBA system has autono-
mous zoom and focus functionalities, thus allowing detailed processes 
to be recorded at higher spatial resolution. Conversely, less zoomed-in 
images could be used for broader spatial observations. In conclusion, 
the AROBA system can precisely align with regions of interest in honey 
bee observations, eliminating the parallax problem, which often oc-
cludes the line of sight to each comb cell’s content.

Table 1. Requirements and constraints in observing and systematically analyzing eusocial animal colonies. From these requirements and constraints, we 
deduced specific challenges in our robot design.

Design principles General design imperatives (all 
animals)

Specific requirements for honey 
bee research

Challenges for robot design

Natural habitat The animals should reside in an as-
natural-as-possible environment to 

exhibit natural behaviors

A queenright colony with 1000+ 
worker bees, combs, and brood 

housed in an observation hive; ability 
to freely forage for food

Considering sufficient space for 
the observation hive, controllable 
entrance and exit access, and bio-

compatibility

 Minimum disturbances The stimuli produced by the obser-
vation system should not alter the 
natural behaviors of the animals

Honey bees are sensitive to visible 
light and environmental vibrations 

inside their hive

Using nonvisible light and minimiz-
ing the vibrations on the observation 

hive

Exhaustive coverage The observational system should be 
able to cover the relevant habitat to 
prevent missing important behavio-

ral aspects

The apparatus should cover the 
whole observation hive with honey 

bees and minimize the areas of 
occlusions

Maximizing the coverage area and 
fitting the robot dimension to the 

workspace limits

Long- term operation The observational system should 
cover the habitat for periods long 

enough to allow interesting ethologi-
cal or ecological observations

The apparatus should be sufficiently 
robust to observe the queen at least 

over a full brood cycle (21 days)

Ensuring the mechanism’s lifetime, 
preventing unexpected failures and 

structural fatigue

 Flexibility and versatility The system should be able to ob-
serve, detect, and analyze many rele-
vant specialized individual behaviors 

and general collective behaviors

The extracted qualitative and quan-
titative data should be derived from 
the queen, from workers, and from 

the comb-filling dynamics

Automatically recognizing and 
analyzing the observation objectives 

with sub-millimeter localization 
accuracy

 Scalability The system should be able to ob-
serve and quantify KBMs (see Table 2) 
on many different levels: population/
colony level, group/cohort level, and 

individual level

The system should measure KBMs on 
the macroscopic level (colony-wide), 
mesoscopic level (groups), and indi-
vidual microscopic level. Also, social 

interactions should be measured

Providing standard and efficient 
ways of data collection and retrieval 
with on-demand adjustable level of 

detail
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Our specific honey bee–observing AROBA system can choose 
where, when, and at which resolution to perform the measurements 
to efficiently refine and complete the colony models. A plethora of 
methods for building maps that capture environment changes by 
autonomous robots have been successfully tested in human-populated 
environments (34). Such methods typically forecast the uncertainty 
of states and schedule the observations toward the most uncertain 
locations and times (35, 36). Similarly, our AROBA system forecasts 
the changes in the queen’s behavioral states and takes into account 
the combs’ dynamics, choosing between scanning the colony con-
tents or focusing on the queen. The priorities of our AROBA system 
to focus on either the queen or on the combs can be altered during 
the system’s operation. In extreme cases, the focus can be on only 
tracking the queen, on comb scanning, or on continuous observa-
tion of specific focal comb areas (Fig.  1, D to K). Such modes of 
operation will likely improve the quality of these focal observations, 
but this will come at the expense of not sampling other relevant data 
in the hive context. In the study presented here, the system was set 
to provide at least five comb scans per day. If the queen was observed 
to be resting and we forecasted that she would likely rest for the next 
10 min, then the robot on the other side of the hive would start to 
scan the comb. Whenever the queen started to move and the last 
scan occurred less than 8 hours ago, the scan was interrupted, and 
the actuator started to “mirror” the positions of the actuator on the 
queen’s comb side. This is essential to more easily “catch” the queen 
in case she switches to the other side of the hive.

The main structure of our AROBA system is a gantry mecha-
nism. Designing a gantry mechanism for observing honey bee be-
havior demands resolving several technical challenges. One of the 
primary challenges is ensuring a precise movement in a vertical 
plane parallel to the queen’s movement plane. Additionally, the 
gantry mechanism must reliably and robustly carry the camera for 
continuous queen tracking. The design of high-precision linear 
actuators, including ball screws, supported by linear guides and 
driven by stepper servo motors is necessary to achieve the required 
precision and responsiveness. Our system’s design addresses 

factors like stability and vibration control to prevent disturbances 
affecting the observation process. Furthermore, considerations for 
the hive environment and the behavioral characteristics of honey 
bees add layers of complexity to the technical challenges. Balanc-
ing these elements in the design process is essential to creating an 
effective and efficient gantry mechanism for studying queen honey 
bee behavior.

Here, we present an application of our AROBA system for con-
tinuous 24-hour-per-day observation of three main components of a 
honey bee colony (queen, workers, and the content of comb cells) 
and their interactions (Movie 1). The system can observe each of the 
three components at different spatiotemporal resolutions using in-
frared (IR) cameras with controllable focus and focal length attached 
to robotic actuators. Our AROBA system cannot observe the entire 
honey bee colony all at once with maximum resolution. Rather, ob-
servations of different colony elements are performed according to 
the priorities of the conducted study, for example, focusing on the 
queen’s movement rather than the comb dynamics. This enables the 
generation of high-quality datasets that exceed the existing amount 
of consistently recorded observations of tracked and classified queen 
behaviors currently reported in published systems (27). Our system 
tracks not only the queen and the workers but also the development 
of the eggs that the queen lays, as well as other elements, such as nu-
trients deposited in the comb cells. These data also provide essential 
indicators of colony health and predictors of future colony growth.

The well-being of a honey bee colony is highly dependent on its 
queen and on her interactions with workers and combs. Therefore, we 
have designed our AROBA system to collect data at multiple system 
levels to quantify important colony KBMs. We distinguish whether 
the KBMs provide information about the queen, her court of adult 
workers, or the wax combs and the brood in their cells. We further 
distinguish between processes operating at the microscopic (indi-
vidual, short-term, local proximate), at the intermediate mesoscopic 
(group-level, medium-term, semi-local, social), or at the macroscopic 
(aggregated, long-term, global, ultimate) system layer. Furthermore, 
KBMs related to interactions between different types of agents are 

Movie 1. Video overview of the developed methodology (robots and algorithms) and housing of the bees. The video briefly shows the key results of our system, as 
well as exemplary image streams produced by our system.
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addressed, for example, social interactions between the queen and 
worker bees or between the bees and brood. A nonexhaustive list of 
KBMs derived from data collected by our AROBA system is shown in 
Table 2.

RESULTS
To demonstrate the capabilities of our AROBA system, we present in-
formation on the data obtained during 1 month of system operation. 
The results are organized according to the structure shown in Table 2. 
Figures 2 to 4 show automatically derived quantitative KBMs and qual-
itative data, which still require human postprocessing for quantifica-
tion, on all four system levels, as they are listed in Table 2. Statistical 
hypotheses are described in table S5.

Data obtained
The AROBA system was set up in July 2023, and data were col-
lected 3 months later in September 2023. The AROBA system op-
erated autonomously, tracking the honey bee queen and scanning 
the contents of the combs. From 20 September 2023 to 19 October 
2023, the AROBA system collected 27.4 million images of the 
queen and her surroundings, including 9789 egg-laying candidate 
locations. The system produced 657 continuous queen tracks, with 
the longest track lasting for 6 hours and 56 min, capturing 25.6 m 
of queen movement. There were 161 tracks that took longer than 1 
hour and contained 74.3% of the detections of the queen and 161 
tracks shorter than 5 min, which contained only 1% of the detec-
tions. The system captured 201,173 snapshots of the combs at 67-
μm/pixel resolution, 96,169 images of the combs at 34-μm/pixel 
resolution, and 101,831 images at 25-μm/pixel resolution.

The recorded data were used to create two datasets. The first data-
set consisted of a 24-hour recording performed on 10 October 2023 
(the day with the most queen detections), containing 4.9 million 
images with 1.2 million queen detections and 196 million worker 
bee detections. The second dataset consisted of data recorded over 
1 month from 20 September 2023 to 19 October 2023, containing the 
data presented in the previous paragraph.

Monitoring the honey bee queen
To enable additional insights into the system’s capability to collect 
data on the honey bee queen, we provided data gathered over a 24-hour 
period. During this time, the system operated completely autono-
mously without any human intervention. The queen was tracked by 
our AROBA system for 19 hours and 32 min, corresponding to 
81.4% of the observed time, producing 1.2 million queen detections. 
Interruptions in tracking were caused by the queen moving behind 
obstructive elements. Our system observed, detected, classified, and 
quantified a substantial set of KBMs of the queen.

As a macroscopic KBM, our system observed the queen’s spatial 
coverage of the hive over time. The queen was found to spend 75% 
(left comb side) and 90% (right comb side) of her time in 15% and 
36% of the total hive space, respectively (Fig. 2B). The queen exhibited 
a strong preference for specific resting sites, spending disproportion-
ately more time at these preferred sites during resting periods than at 
the rather dispersed sites traversed during her active walking phases 
(Fig. 2B). The queen also showed a strong preference for resting on 
the left side of the comb, where she spent 11 hours and 38 min, 
compared with the right side, where she rested for 3 hours and 14 min. 
The preferred resting area (orange rectangle in Fig. 2A) was chosen 
657 times out of 1793 resting events on the upper comb, thus in 37% 
of resting cases in an area that accounted for only 16.67% of the total 
upper comb area. A more detailed analysis of this spatial preference 
for the queen’s resting periods is given in Fig. 5.

As a mesoscopic KBM, the first passage time was analyzed by our 
system (Fig. 2C). When looking at the differences between the right 
and left sides of the hive, we could see a slight difference in the means 
(on average 20 s), which we assumed does not have much biological 
relevance given the spread of the first passage values. The upper bounds 
of the time ranges grew faster than the observed mean or the mini-
mum values as the displacement threshold reached the physical size 
limits of the comb space (Fig. 2D).

At the microscopic level, our system extracted the queen’s posi-
tion, orientation, and speed over time (Fig. 2, E to G) and aggregat-
ed these data into continuous tracks. The reconstructed single-day 
trajectory of the queen consisted of 14 tracks ranging in length from 

Table 2. KBMs autonomously measured by our AROBA system. The system observes, detects, classifies, and quantifies 23 event types across macroscopic, 
mesoscopic, microscopic, and social interaction layers. KBMs that are automatically quantitatively measured by our system are indicated with an asterisk (*); 
those that are collected as qualitative-only data (so far) and those that require manual quantification are marked with a dagger symbol (†). More details on the 
KBMs, their evaluation, and their significance are given in the Supplementary Materials (“KBMs - Definitions and Significance” and table S4).

Type of KBM Queen Workers Brood and comb

 Macroscopic A1*: Areal coverage of comb space 
over time

B1*: Density and numbers of bees 
detected

C1a*: Global egg position map

C1b*: Overall egg-laying rate

 Mesoscopic A2*: First transit time of the queen B2*: Worker densities near and far 
from the queen

C2*: Compactness of the queen’s 
egg-laying pattern

 Microscopic A3*: Queen positions, locomotion, 
and orientations

B3*: Worker positions, locomotion, 
and orientations

C3a†: Successful brood development

C3b†: Failed brood development

 Social A4a†: Feeding the queen B4a†: Cleaning the queen C4a†: Nursing

C4b†: Hatching

A4b†: Cleaning the queen B4b†: Worker trophallaxis C4c†: Capping

C4d†: Worker inspection

A4c*: Court dynamics B4c*: Time spent in court C4e†: Queen inspection

C4f†: Egg-laying events
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0.01 to 12.1 m and lasting from 8 min to 4 hours. More than 80% of 
detections were contained in four tracks with lengths exceeding 100 min 
each. The total observed distance of the queen’s movements was 
67.12 m, with 34.95 m traversed on the left side and 32.17 m on the 
right. The 1.2 million queen orientations extracted indicated that the 
queen spent more than 50% of her resting time in an upward ±25° 
orientation (Fig. 2G). We compared the empirical distributions of queen 
orientation when resting and walking in Fig. 2G to the uniform dis-
tribution. A Kolmogorov-Smirnov (KS) distance of 0.11 for walking 
and 0.40 for resting shows that queen orientations were less uniform 
when resting. The 10th percentile of queen speed was 0.9 mm/s, and 
the 90th percentile was 4.8 mm/s. The median speed was 2.7 mm/s, 
and the mean speed was 2.8 mm/s (Fig. 2F).

Regarding the queen’s social interaction metrics, the system could 
detect, count, and track the court bees within a certain distance from 
the queen. See Fig. 3 for more details regarding those measurements. 
Our 1-day dataset provided us with 717,223 court bee counts. The 
number of bees directly interacting with the walking and resting queen 

is shown in Fig. 2 (I and J). While resting, the number of court bees was 
between 5 (10th percentile) and 10 (90th percentile) with a median of 8 
bees and an average court size of 7.8 bees. The number of court bees at 
any given time of queen movement was between 1 (10th percentile) and 
7 (90th percentile) with a median of 4 bees and an average of 3.9 bees.

Monitoring adult worker bees
In addition to tracking the queen, our AROBA system could detect indi-
vidual adult worker bees on and in the comb cells. When the queen was 
resting, the system could stop tracking her and start to systematically 
scan the comb while detecting and localizing the other bees in the colony.

As a macroscopic metric of the worker population, we estimated 
the worker bee density over the entire comb area (Fig. 3A). More-
over, the number of bees detected on each side of the hive during a 
day allows us to estimate the overall population of the hive (Fig. 3B). 
During the 1-month period of operation, the system performed 
1811 scans, providing 151,996 images with more than 4.8 million 
worker bee detections. These detections allowed us to estimate the 
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Fig. 2. Representative queen-related KBMs autonomously observed by our AROBA system. (A) Map of the area covered by the queen on one side of the hive. A vicin-
ity of 20 mm around the queen is considered to be visited, thus potentially affected by the queen via pheromones and vibrations. The left third of the upper comb on this 
side of the hive (see orange rectangle) is considered to be a preferred resting area. (B) Proportion of the queen’s total time spent on the covered area of each side of the 
comb, together with the percentage of time she spent on a given area during resting and walking. (C) Example sketch of first passage time estimation with the queen’s 
trajectory in yellow and example displacement thresholds in red. (D) Observed first passage times of increasing displacement thresholds for both hive sides, showing 
mean and 10th/90th percentile range. (E) Stitched still image overview of one side of the observation hive with the observed queen’s trajectories. The image was com-
posed using odometry-based stitching. The last continuous track of the dataset is shown in red; all others are in yellow (movie S1). (F) Distribution of the queen’s walking 
speed with a histogram bin size of 0.2 mm/s. (G) Distributions of observed queen resting and walking orientations with a 10-degree histogram bin size. (H) Representative 
frame of recorded queen feeding events (movie S2), captured at our highest possible image resolution. (I) Two-hour court data sample analysis, correlating the queen’s 
speed with her court size. (J) Distribution of court sizes. The tracking performance was evaluated on 16,230 manually annotated images, 6414 of which contained the 
queen. The average error is 0.847 pixels (56.7 μm) with a maximum value of 2.23 pixels (149 μm). The precision is 1.0, the recall is 0.952, and the F1 score is 0.975. In the 
analyses for (B), (F), and (G), the queen’s state changes from resting to walking at 1 mm/s and reverts to resting when the queen fully stops.
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colony population growth from 2350 adult bees on the 20th of Sep-
tember to 3350 adult bees on the 19th of October. We found a statis-
tically significant difference between the number of bees on the left 
and on the right side of the hive, yet the average difference between 
the daily population sizes of the month-long dataset (Fig.  3B) on 
each side amounted to only 5.2%.

As a mesoscopic KBM, a worker bee detection algorithm was per-
formed in parallel with the queen tracking algorithm to measure the 
density of bees around the queen. The data gathered over 1 day 
(5.1 million detections) indicated that when the queen did not move, 
the density of bees in her immediate vicinity—we call this area the 
“court interaction area” (Fig. 3C and movie S3)—was between 0.5 and 
1.0 bees/cm2 (10th/90th percentile) with an average of 0.78 bees/cm2. 
A wider area around the queen, called the “outer court area” (Fig. 3C), 
was less densely populated: 0.62 bees/cm2 compared with the rest 
of the comb with 0.37 bees/cm2. The 10th/90th percentiles were 
0.38/0.90 bees/cm2 and 0.21/0.55 bees/cm2, respectively (Fig. 3D); this 
difference in densities is shown in detail in the Supplementary Materials 
(table S5).

To measure the effect of the queen’s presence on bee density, we 
also looked at how many bees were around the queen compared 
with the other (queen-less) side of the hive. On average, there were 

5.1 more bees on the queen’s side in a 130 cm–by–72 cm area cen-
tered around her than on the other side. As a microscopic KBM, we 
processed 97 million bee detections gathered over 1 day to obtain 
the bee speed distribution. Worker bee walking speed and resting 
orientation differed more from the queen than the orientation while 
walking. This is shown in distribution distances of KS = 0.29, 0.25, 
and 0.09, respectively (Fig. 3G).

To measure the queen’s social connection with worker bees, we de-
termined the typical duration of worker-queen interactions by extend-
ing the worker bee detection with an algorithm that allows further 
tracking of the unmarked workers. Our analysis of the 26,082 tracks 
collected over 1 day revealed that about 97.1% of direct worker-queen 
interactions were shorter than 1 s. However, of the 2.9% of events where 
interactions were longer than 1 s, 8.5% of workers resided close to the 
queen for more than 30 s (Fig. 3J).

Monitoring the brood status and the egg-laying patterns 
on the combs
A key feature of our AROBA system is its capability to monitor the 
brood status by analyzing the development of the comb structure 
through the queen’s oviposition behavior. This analysis was facilitated 
by a CNN that classified the queen’s oviposition behavior [more 
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Fig. 3. Representative worker-related KBMs autonomously observed with our AROBA system. (A) Worker population density across the left comb. (B) Number of 
detected bees on both sides of the hive during a day along with an estimate of the total number of bees in the colony. The total number of bees was estimated from the 
sum of both sides, as well as the precision and recall of the detector. The precision was 0.89 (n = 6994 detections), the recall was 0.47 (n = 13,189 annotations), and the F1 
score was 0.62. (C) Court bee detection and tracking in the queen’s vicinity (movie S3). (D) Worker bee density near the queen. Detection of crawling, unobstructed bees 
in central regions of the hive, which correspond to Fig. 2 (D and I), has a precision of 0.82 (n = 3886 detections), a recall of 0.84 (n = 3804 annotations), and an F1 score of 
0.83. (E) Representative image for worker bee detection. Green ovals, true positives; red crosses, false negatives; arrows, worker bee orientations. (F and G) Distributions 
of worker bee speeds and orientations. (H) Worker bees removing an unwanted egg that got stuck on the queen’s abdomen, thus cleaning her (movie S4). (I) Worker bees 
sharing food trophallactically (movie S5). (J) Distribution of the duration of worker bee presence in the queen’s court.
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details are given in the Supplementary Materials section “Measuring 
the Oviposition Rate (Egg-Laying Rate) of the Queen”].

As a macroscopic KBM, we systematically recorded the spatial dis-
tribution of oviposition events over the entire comb area (Fig. 4, A and 
B) from the 30-day dataset, beginning 20 September 2023, with a max-
imum of 350 eggs and a minimum of 46 eggs laid per day (considering 
the universal time zone for daily intervals). The 10th percentile and 
90th percentile of the number of eggs laid were 96 and 296, respectively. 
The mean number of eggs laid per day was 187, with no apparent pref-
erence for either side of the hive (Fig. 4A). When applied to a dataset of 
9789 candidate oviposition events, the CNN-based method identified 
5961 oviposition events (Fig. 4B). For details on the training and testing 
of the CNN, see the description in Fig. 4 or the Supplementary Materi-
als [“Measuring the Oviposition Rate (Egg-Laying Rate) of the Queen”].

As a mesoscopic KBM, the oviposition compactness was analyzed 
by our system (Fig. 4C). This was achieved by assessing the brood 
occupancy status of neighborhood “ring” sizes of r = 1 containing 6 
cells, r = 2 containing 12 cells, and r = 3 containing 18 cells, corre-
sponding to blue, green, and violet zones, respectively, in Fig. 4C. Our 
system systematically observed that more than 50% of the oviposi-
tion acts happened in regions where one or more eggs were recently 
laid in one of the six neighboring cells. More than 50% of these egg-
laying acts also occurred in regions with two or more recently laid 
eggs within a radius of three cells (Fig. 4D).

As a microscopic KBM of brood development, we observed larval 
growth within brood comb cells. Successful brood growth began 
with the queen laying a single egg into a cell. A larva then emerged 
after 3 days (Fig. 4E, i to iii). This larva was then fed, and it grew to fill 
the entire cell at an age of approximately 3.5 to 4.0 days (Fig. 4E, iv 
and v). Typically, successful larval development was marked by the 
capping of the cell about 5 days after hatching from the egg (Fig. 4E, 
vi). Conversely, cases of unsuccessful brood development (“brood 
cannibalism”) occurred when an egg or the subsequent larva was 
eventually removed. This removal resulted in an empty cell, and the 
predicted cell capping did not occur (Fig. 4F, i to vi, and movie S8).

For observing social interactions, our system captured a plethora 
of key behaviors regarding interactions between the queen, workers, 
and brood. Currently, our system does not extract quantitative data 
autonomously from those qualitative video recordings. However, be-
cause we know the egg-laying positions and time, we can forecast 
such events and set locations of interest that the robot monitors fre-
quently. We captured interesting events and qualitative data from the 
video stream. Figure  4G shows a representative set of interactions 
between different types of agents: brood nursing by workers (Fig. 4G, 
i), workers capping fully grown larvae with a wax cover (Fig. 4G, ii), 
workers helping fully grown adults hatch from underneath their 
wax-capped cells (Fig.  4G, iii), general brood inspection acts of 
workers (Fig. 4G, iv), oviposition acts by the queen (Fig. 4G, v), and 
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Fig. 4. Representative comb-related KBMs autonomously observed with our AROBA system. (A) Positions of the candidate, the confirmed, and the filtered egg-laying 
acts over 1 day (movie S6). (B) Candidate and confirmed egg-laying acts over 1 month. (C and D) Metric indicating the spatial compactness of the egg-laying acts over 1 day. 
(E and F) Successful and unsuccessful brood growth examples (movie S8). (G) Worker bees interacting with the brood cells (movies S9 and S10) and details of the honey bee 
queen inspecting comb cells and laying eggs into them (movie S7). A CNN for oviposition detection was trained on data obtained from queen tracking (n = 22,715 images) 
and tested on independent data from queen tracking (n = 408 image stacks), resulting in a precision of 0.9338, a recall of 0.9513, and an F1 score of 0.9425.
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cell inspections by the queen to find suitable cells for egg laying 
(Fig. 4G, vi).

We further analyzed our data to characterize the queen’s resting 
behavior. As indicated in Fig. 2A, our data suggested a “preferred rest-
ing zone” on the upper comb. Figure 5A shows that our observation 
strongly differed from the resting time distribution found in another 
model insect species [Drosophila melanogaster; reference data from 
(37)]. The gray area indicates the whole envelope of observations in 
Drosophila (male and female, in light and in darkness) between the 
lowest and the highest observed resting time probabilities. Although 
in the brood nest area (magenta line) the resting time of the queen fell 
within the “envelope” of reported Drosophila observations at short 
resting events (d  ≥  30 s), this only happened for very long resting 
times (d ≥  3000 s) in the other hive areas (orange, cyan, and blue 
lines). The observed behavior in the presumed preferred resting zone 
differed also from the resting behavior (orange line) in the lower 
comb’s periphery region (blue line) and in the other regions of the 
upper comb, which were also used for honey storage (cyan line). In 
the preferred resting zone (Fig. 5B, orange), which is the upper comb 
area, we found that the queen rested longer and more often, following 

the same general distribution pattern as her resting that occurred in 
the other honey storage areas but strongly deviating from her resting 
behavior in the brood nest area (Fig. 5A). Very short resting events 
(d < 12 s) were similarly frequent in all regions of the hive (Fig. 5A). 
There was generally a preference for peripheral areas of combs for 
the queen to rest; however, this phenomenon was the strongest in 
the presumed preferred resting zone indicated by the orange area in 
Fig. 5B. This localized preferential resting was not a short-term phe-
nomenon (Fig. 5C). We normalized the daily sum of all resting peri-
ods on the upper comb to compensate for the size differences of the 
investigated areas. We found that for 24 of 30 days this resting zone 
was spatially preferred, in most cases to a high extent. For the re-
maining days, when such a prominent preference was not found, the 
overall resting of the queen was comparably short. It is also note-
worthy that we observed resting rates per day that varied almost one 
order of magnitude among these days, from a minimum resting of 
1.47 hours per day to a maximum resting of 11.76 hours per day. 
Specific details on the data processing for producing Fig. 5 are given 
in the Supplementary Materials (“Data Processing and Statistical 
Methods”).

Fig. 5. Analysis of spatiotemporal aspects of the queen’s resting behavior. (A) Complementary (inverse) cumulative probability distribution of the queen’s resting 
behavior over 30 days of observation. Locomotion pauses of the queen shorter than 1 s or that fall within a time window of 10 s before an egg-laying event (most likely 
cell inspections, see also movie S7) are excluded from this dataset to focus on the queen’s resting behavior. The orange area shows the presumed preferential resting zone. 
The cyan area shows the other areas of the upper comb. The magenta area shows the area that we identified as the brood nest region on the lower comb in Fig. 2A. The 
blue area shows the remaining (periphery) region of the lower comb. The gray area shows the envelope between the reported minimum and maximum in reference data 
from literature (37), indicating resting data of Drosophila fruit flies. (B) Spatial map of the queen’s resting locations in the hive. Red circles represent resting events longer 
or equal to 12 s. The blue area shows the resting phases below 12 s of duration. The shades of color indicate the duration of resting phases: 10% base opacity + 80% opac-
ity linearly stretched between the minimum (1.7 s) and the maximum (1.52 hours) observed resting phase. The orange area indicates the resting area, as also shown in 
Fig. 2A. The clipped elliptic dashed line indicates the outer rim of the brood nest region in our colony. The star indicates the hive’s entrance/exit location. (C) Comparison 
of total resting periods per day in and outside the presumed preferred resting zone on the upper comb split into two datasets: inside versus outside of the orange-
indicated preferred resting zone, normalized in s/cm2.
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DISCUSSION
We present here an AROBA system specifically tailored for autono-
mous long-term observation of honey bee colonies. We have demon-
strated the versatility and utility of this system through automatically 
collected datasets and algorithms that are capable of directly extract-
ing 23 KBMs of the honey bee colony (see Table 2 for a list) either 
directly from the motion trajectory of the robot (e.g., the queen’s cov-
erage of the hive or the queen’s resting locations) or via the extraction 
of KBMs from the recorded video footage (e.g., egg-laying rate or the 
sizes of the court bee group). These KBMs measure the honey bee 
colony functionalities on four different levels: the macroscopic, the 
mesoscopic, and the microscopic system layers and on the social in-
teraction layer. More details on these KBMs, their evaluation, and 
significance are given in the Supplementary Materials (“KBMs - Def-
initions and Significance” and table S4).

Although some data are shown here qualitatively, others were auto-
matically extracted quantitatively. The system has demonstrated its 
ability to track long-term colony-wide trends, such as the colony size 
evolution, while also providing detailed long-term insights into spatial 
and temporal patterns within the colony, such as the queen’s oviposi-
tion behavior and the spatial coverage of the hive during her patrolling 
activity. The latter is important for pheromone dispersal (38, 39).

Health of the colony and avoiding behavioral artifacts
Our AROBA system was designed to minimize its influence on the 
honey bees’ natural behaviors and well-being. This includes features 
such as adequate ventilation, provision for supplemental feeding and 
medication, and the use of illumination outside the bees’ visual spec-
trum to maintain a dark environment similar to a natural beehive. 
Although the bees could freely fly out to perform their foraging ac-
tivities, the hive and the robotic system were housed in a temperature-
controlled laboratory to prevent the heat generated by its electrical 
components from influencing bee behavior. Substrate vibrations play 
a pivotal role in honey bee communication and colony organization. 
It was therefore of the highest importance to minimize the vibrations 
caused by the systems’ motors, as well as the transmission of poten-
tial vibrations to the hive. Detailed information on the design choices 
made to avoid influencing the natural behaviors of the animals is 
provided in the Supplementary Materials (“Hardware of our AROBA 
System,” “Design Decisions for Preventing Behavioral Artifacts,” and 
“Detailed Specifics of the Mechatronics Design”). The prolonged ob-
servation did not adversely affect the health of the colony, as evi-
denced by the substantial increase in population size during the 
observation period (Fig. 3B). This growth indicated not only prolific 
egg laying by the queen (Fig. 4, A and B) but also successful develop-
ment of the brood into workers and suggested a high survival rate of 
adult workers, contributing to the rapid expansion of the colony. Fur-
ther information on the long-term health of the study colony is pro-
vided in the Supplementary Materials (“Long-term Effects on Colony 
Health and Behavior”).

Unexpected observations and biological findings
Although our ethological experience suggested that a queen tends to 
rest in the upper areas of the observation hive, where the honey stores 
are usually located, we were surprised by the consistency with which 
our queen chose specific resting locations. The majority of resting events 
occurred in the left part of the upper comb on the left side of the hive 
(Fig. 2A, bright spot and rectangular area). This resting spot prefer-
ence warrants further investigation into the local factors influencing 

the queen’s decision-making. The entire upper comb was used by the 
colony as a honey storage area, and the indicated resting zone was the 
furthest distance away from the hive’s exit/entrance and thus likely the 
safest and quietest place in terms of worker bee traffic in the hive. On 
the basis of the 30-day-long observation that we analyzed in Fig. 5, we 
found strong evidence that this hive area is, in fact, preferred by the 
queen. Across the whole spectrum of resting durations longer than 12 
s, this area exhibited the highest frequency of resting events (Fig. 5A). 
Although other non–brood nest areas showed similar distribution 
patterns, longer resting events were less frequent in these areas. This 
behavior was observed on most days throughout the 30-day observa-
tion period.

Figure 5 reveals two additional key findings. First, the queen’s rest-
ing behavior differed notably between the brood nest and non–brood 
nest areas, even excluding short resting events associated with egg lay-
ing (likely cell inspections, see also movie S7). This finding suggests 
that the queen exhibited distinct activity modes within and outside 
the brood nest area. Second, the resting time distributions for events 
lasting between 1 and 12 s were consistent across areas, suggesting 
that these were brief pauses due to hive traffic rather than recuperative 
rest. Our data indicate that the density of bees, and thus the difficulty 
of navigation, was relatively consistent across different regions of the 
hive. In our interpretation, we distinguish between short-term mo-
tion pauses (d < 12 s) and longer resting periods (d ≥ 12 s), as shown 
in Fig. 5B. Future research is needed to further investigate the charac-
teristics of resting and motion in the beehive. As we demonstrate here, 
our AROBA system can provide the relevant data in sufficient quan-
tity and quality for such endeavors.

Furthermore, the queen preferentially orientated herself vertically 
upward (90° ± 25°, median ± interquartile range) during 50% of her 
resting time, whereas her orientation during walking periods was 
evenly distributed (Fig. 2E). During the 1-month-long period of mon-
itoring, the queen walked almost the same distance on both hive sides 
(746.78 and 751.23 m), a result that supports our alternate tracking-
and-scanning regime. However, she spent 59% of her time on the left 
side (side 1) of the hive.

The quantitative data presented in Fig. 2 (B and D) provide inter-
esting insights into the queen’s exploration versus exploitation trade-
off: balancing the distribution of footprint pheromones throughout 
the hive with the need to lay eggs in a compact brood nest for effi-
cient thermoregulation by worker bees. In parallel, our AROBA sys-
tem provides detailed data on the microscopic properties of these 
locomotion behaviors (Fig. 2, F and G), the dynamics of the court 
bees (Figs. 2, H and I, and 3J), and the resulting patterns at various 
system levels (Fig. 4, B and D).

Limitations of our system
A principal limitation of our AROBA system is its inability to observe 
all colony states simultaneously. The system must prioritize observa-
tions on the basis of the likelihood of changes in specific states of the 
observed system, necessitating the use of temporal models to predict 
future events. However, there is no mechanism to verify whether the 
estimated rate of change is slower than the actual rate of change in the 
colony, because the scheduled observations might not capture all rel-
evant events.

Additionally, the system relies on maintaining high visual transpar-
ency of the hive’s glass cover. Fogging due to microclimate differences 
and wax deposition by bees can impair the performance of vision algo-
rithms. However, our system’s moving camera can proactively address 
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this issue by repositioning itself to view areas of interest through clear-
er sections of the glass. Although frequent cleaning can further miti-
gate this problem, it can also disturb the colony and potentially trigger 
unnatural behaviors. More information on glass treatment and a quan-
titative analysis of glass decay in our study is provided in the Supple-
mentary Materials (“Glass Treatment”). Additional considerations 
regarding the potential limitations of our system are discussed in the 
Supplementary Materials (“Extended Discussion”).

During the 30-day recording period, the AROBA system achieved 
97.6% uptime but encountered some challenges that required 
maintenance intervention. On two separate occasions, bees escaped the 
hive and obscured a calibration pattern, necessitating their removal to re-
sume system operation. In another instance, a small gap in the hive was 
discovered and sealed. Sensor drift in the actuator caused issues in cali-
bration pattern detection on two occasions, which were resolved remote-
ly through software updates. A thorough cleaning of the hive’s glass cover 
became necessary at one point during the 30-day period of observation.

Technologies for monitoring, observing, and 
tracking animals
Our AROBA system was carefully designed to minimize its influence 
on the observed honey bees. This allows for the study of natural behav-
iors without introducing experimental artifacts. Although the litera-
ture on animal-observing robots is rather limited, there are examples 
that show that such systems typically need to be either well hidden (as 
is the case in our study) or biomimetic to avoid disturbing the animals.

Prominent examples of observation-only robots in wild habitats 
include the nonbiomimetic MesoBot, which tracks marine organ-
isms in the deep sea (40), and various biomimetic robots designed to 
observe oceanic life (41, 42). Aerial drones have also proven effective 
for wildlife monitoring, often outperforming human observers in lo-
calization and counting tasks (43). Thermal sensing from drones has 
further enhanced wildlife observation capabilities (44).

Although our AROBA system was deployed indoors, it observed 
a complete honey bee colony that successfully overwintered and for-
aged freely in the outdoor environment. Thus, we consider our ARO-
BA system to be operating in at least a “semi-wild” setting. Compared 
with the aforementioned systems (40–44), our AROBA system dem-
onstrates high flexibility, versatility, autonomy, and long-term opera-
tion capabilities.

Smart beehives represent a different technological approach for 
monitoring honey bees in the wild, sensing mostly on the macroscopic 
(colony) level. These systems are either specifically designed hives with 
technological augmentations (45) or modules added to existing stan-
dard hives (46). They typically use sensors to measure in-hive climate 
parameters like temperature, humidity, and CO2 and O2 levels (46, 47). 
Other approaches use acoustic monitoring to assess bee activity and 
potential swarming behavior (46, 47). Additionally, weight dynamics 
of the hive can be tracked to estimate honey yield (47, 48). Our ARO-
BA system differs strongly from these technologies, because it is de-
signed for fundamental research in behavioral biology and therefore 
collects data also on the mesoscopic and microscopic system levels. It 
also incorporates autonomous mobile robotic components, which are 
not typically found in “smart beehives” that are currently on the market.

Comparison with other technologies and methodologies
The classical methodology for observing honey bees relies on visual ob-
servation by human researchers. Most studies have focused on worker 
bees, with systematic visual observations of the queen being rare. One 

example study was based on a single 5-hour continuous observation of 
the queen and a few continuous observations of court bees (49). An-
other study reported 14 queen-focused observations, the longest lasting 
more than 115 hours (50). However, the latter primarily used interval-
based sampling in 3- to 8-hour intervals. These long-term observations 
were made with 100 to 700 bees—a colony size that would not survive 
winter. Two seminal studies observed queens and their court bees in 
mid-sized colonies (2500 to 10,000 bees) for 1 hour per day (19, 51). 
Another study observed the queen over 33 days, with two daily 2-hour 
continuous observations in a colony of approximately 13,000 bees (52).

Generally, the human factor is a limiting factor in ethology. Long 
observations are tiring, ultimately resulting in poorer data quality. Al-
though increasing the number of observers may compensate for fa-
tigue, the added heterogeneous subjectivity within the observer pool 
may decrease data quality again. In contrast, our AROBA system en-
ables autonomous and continuous queen observation 24 hours per 
day, with the potential for unlimited duration given sufficient mainte-
nance and data storage. Herein, we report robotic observations in a 
full-sized, healthy colony that successfully overwintered. More details 
are given in the Supplementary Materials (“Long-term Effects on Col-
ony Health and Behavior”). Additionally, our system autonomously 
observed comb states, worker states, and worker densities.

Our AROBA system presented here was specifically tailored to focus 
on honey bee queen behavior. The literature reports several technolo-
gies focusing on other aspects of honey bees. Visual observation with 
fixed-mounted cameras was used to track worker bees with “barcodes” 
mounted on them (32, 53), sometimes to extract social networks of in-
teractions between worker bees (54–56). Markerless tracking of worker 
bees across the colony using fixed cameras has also been reported 
(29, 57–59).

The downside of fixed-camera systems that capture the whole 
hive side is that either they reduce the number of pixels that repre-
sent one bee or they require expensive high-resolution cameras, 
which also dramatically increase the data load. Additional problems 
are often caused by the decay of glass transparency and potential 
reflections from lamps. When looking into the comb cells becomes 
important, the “parallax problem” (most cells are seen from the side 
and the cell floor is not visible) occurs strongly with fixed cameras. 
Moving the camera further away from the hive can alleviate the par-
allax problem, but it increases the space requirements of such sys-
tems. Wide-angle lenses may allow the camera to be closer, but the 
parallax problem and distortions will increase. A potential compro-
mise is using multiple cameras focused on specific regions, as dem-
onstrated in a study with a three-camera array (60). However, such 
solutions pose challenges like increased power consumption, heat 
dissipation, space requirements, and algorithmic complexity, par-
ticularly in handling object transitions between different camera views.

In the literature, video recordings with fixed cameras have also 
been reported for observations of a small subset of a brood (61), for 
waggle dancing bees (28, 62, 63), and for forager bees in their hom-
ing flights (64–66). Besides visually tracking bees in hives, methods 
based on radio frequency identification have also been used (67), 
mainly at the hive’s entrance/exit (68, 69). Although using such tran-
sponders inside the hive may reduce problems associated with the 
glass of an observation hive, they will have very limited use in ob-
serving and discriminating behaviors and brood states.

There is no clear, easy solution when designing an observation 
system with fixed cameras because the more they are tailored for 
one aspect, the less they seem suitable for others. We believe that our 
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AROBA system comes closer to an effective solution because it can 
operate with a modest camera, requires only one camera per hive 
side, and can focus on specific animals while surveying the whole 
colony on the other side of the hive. It minimizes the parallax prob-
lem and avoids problems with reflections by positioning the camera 
close to the glass. Additional considerations about similar technolo-
gies are provided in the Supplementary Materials (“Further Com-
parison to the State of the Art”).

Conclusion and future potential
We envision further developments of our AROBA system that will al-
low us to deepen our understanding of the self-organization processes 
governing honey bee colonies. Aggregated and complex KBMs, com-
bining multiple metrics, will help to reveal interactions between seem-
ingly unrelated behaviors and serve as an early warning system for 
deteriorating colony health. Enhancements such as extending machine 
vision to automatically quantify currently qualitative measurements 
(e.g., brood development), implementing localized lighting to improve 
visibility and efficiency, and equipping the system with additional sen-
sors (such as thermal cameras, event-based cameras, and laser scanners) 
will enrich the environmental and behavioral datasets collected. By inte-
grating robotics, machine learning, and artificial intelligence, the ARO-
BA system contributes to a paradigm shift in behavioral ecology, offering 
greater objectivity, scalability, and reproducibility than human observers 
and enabling large-scale data collection that can advance basic biological 
understanding and complexity science. Further information on future 
potential applications of our system is provided in the Supplementary 
Materials (“Future Potentials and Other Fields of Application of an 
AROBA system”).

MATERIALS AND METHODS
The software architecture comprises modules communicating through 
a subscribe-publish Robot Operating System (ROS) framework. Each 
of the two AROBA system’s modules runs a fiducial-based queen de-
tection module, providing the queen’s position to the actuator control-
ler, which controls the actuator motors. The actuator controller also 
estimates the visibility, position, and state of the queen and shares this 
information with the other AROBA system’s module. This can either 
mirror the first module’s position or scan the comb. Camera images, 
queen positions, actuator motor data, as well as other system informa-
tion are stored in data structures called “rosbags.” These are regularly 
processed to extract their metadata and backed up to a Network At-
tached Storage system. The data can then be further processed by a set 
of analytics modules that are run on demand.

Biological aspects of the study
The western honey bee subspecies Apis mellifera carnica Pollmann 
was used in this study. The colony was maintained at the University 
of Graz under strict animal welfare guidelines. The colony, estab-
lished in March 2023 with approximately 2000 bees, was free to for-
age outside the laboratory and was fed sugar solutions at the 
beginning of the season to promote colony growth. The queen was 
marked with a fiducial marker for tracking. Standard beekeeping 
practices were used to maintain a healthy colony, including treat-
ment for parasites such as Varroa destructor. All observations were 
made using near-IR light to preserve natural behavior (70). More 
details on the animal care and the biology of this study are given in 

the Supplementary Materials (“Biological Aspects of this Study” and 
“Long-term Effects on Colony Health and Behavior”).

Mechatronic design of the AROBA system
Our AROBA system (Fig. 1, A and B) uses a gantry mechanism to track 
the queen and collect data from her behavior over the long term, which 
demands precision, durability, and versatility. The AROBA system sup-
ports a video camera; hence, the image quality depends on the mecha-
nisms and motion control performance. The structure, the actuation, 
and the control systems were individually designed considering the re-
quirements and constraints of the vision system. Our system integra-
tion prioritized stability and adaptability to work in a vertical plane, 
which is necessary according to the observation hive’s configuration. 
The main structure uses aluminum profiles allowing sufficient sturdi-
ness while keeping the resulting structure lightweight for an operator to 
move it during installation or maintenance. The motion accuracy was 
enhanced by incorporating linear actuation systems, including feed 
drive ball screws and linear guides, to improve efficiency and stability.

Stepper servo motors with microstepping capability ensure accu-
racy in positioning, ultimately facilitating tracking the queen’s motion. 
The system driver receives position and velocity commands and sends 
feedback on its current state to the management software. The main 
driver of the system was implemented on an ESP32 development 
board, which is reliable to run the system continuously. However, 
management software was developed to make a bridge between the 
ESP32 driver and the vision system for more efficient communication 
with other nodes and subsystems in the ROS network. The manage-
ment software used the ROS communication protocol for convenient 
access in sending commands and receiving data for other nodes, par-
ticularly to and from the vision software. The final mechatronic system 
works continuously to follow the queen and scans the hive for addi-
tional data collection when the queen is resting on the other side of the 
hive. The integration of the AROBA system’s hardware, the driver, and 
the vision software allows continuous data collection. The operator’s 
supervision is needed for health monitoring and necessary mainte-
nance only. Also, we determined how often the system needs recalibra-
tion according to the vision system’s criterion for the mechanism 
precision. We evaluated the performance and precision of the devel-
oped mechanism through a series of experiments. In those tests, the 
vision system was used to measure the mechanism's repeatability and 
precision. The test scenario included 8 hours of repetitive sweeping 
motion to measure the trajectory-following accuracy and the drift af-
ter the completion of each round. According to the results obtained 
from a series of experiments, the mechanism had less than 10 mm of 
drift after traversing a 1-km distance. The AROBA mechanism was 
designed for observation, and it did not have any interaction with the 
bees inside the observation hive. Moreover, passive isolation with anti-
vibration connectors was applied to make sure that the mechanism did 
not affect the experiment’s conditions. More information is given in 
the Supplementary Materials (“Overall System Design,” “Observation 
Hive,” “Hardware of our AROBA System,” and “Detailed Specifics of 
the Mechatronics Design”).

Vision and control of our AROBA system
The system’s control software is based on ROS. Thus, the software is 
composed of several networked modules, communicating via a 
standardized subscribe-publish framework. These modules process 
the motor data and camera images, control the movement of the 
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AROBA system’s actuators, handle data storage, and extract data re-
quired to establish the KBMs (Fig. 1, C to E).

Each AROBA system’s module used an IR camera, which provides 
1920 pixel–by–1080 pixel images at 30 frames per second. More infor-
mation is given in the Supplementary Materials (“Vision System of our 
AROBA”). For the queen and worker bee tracking, the software set the 
camera zoom to provide images with 15 pixels per millimeter, and the 
focus was optimized for sharp pictures of the bees. Detailed comb 
scans were captured with the camera lens focus and zoom set to pro-
vide sharp images of the comb at 40 pixels per millimeter. The images 
could be composed using odometry-based stitching as in Figs. 2 (A 
and E), 3A, and 4A and in movie S1. The images were also analyzed by 
a fiducial marker detection and a 6-degree-of-freedom (DoF) localiza-
tion method, WhyCode (71). The honey bee queen was equipped with 
a circular fiducial marker attached to the dorsal side of her thorax. Al-
though the pattern drawn on the marker was not standard, its size (2.1 
mm), shape (circle), and material (Xerox NeverTear with Belton acryl-
ic varnish) were similar to the markers commonly used by beekeepers 
to identify the queen quickly.

Both the AROBA system’s left and right actuators were controlled 
independently. However, they informed each other about the queen’s 
visibility, position, and speed to coordinate their activity and move-
ment. The strategy of this cooperation is described briefly in the In-
troduction section, depicted schematically in Fig. 1, and described 
in more detail in the Supplementary Materials (“Queen Detection 
and Tracking” and “High-Level Control, Self-Diagnostics, Power 
and Data Management”). A dedicated computer performed diag-
nostics, data, and power management routines. System modules 
that exhibited a drop in the expected outgoing data stream were 
considered faulty and were restarted in software. In case the faulty 
behavior persisted after three software restarts, a hardware restart 
was performed through power management. More details on the 
data flow are given in the Supplementary Materials (“Software Inte-
gration and Data Flow”).

Vision-based detection, localization, tracking, 
and classification
Establishing the KBMs relies on computer vision methods that track 
the queen, detect the egg laying (oviposition), and localize the worker 
bees. More details on the method integration are in the Supplemen-
tary Materials (“Software Integration and Data Flow”). Tracking the 
queen was achieved by the WhyCode (71) method, which was capable 
of reliable detection and precise 6-DoF localization of a marker at-
tached to the queen’s thorax. To determine the method’s detection 
performance, we annotated 16,230 images from 1 day and both sides 
of the hive at approximately 10-s intervals. The established precision 
and recall were 1.00 and 0.952, respectively. The 6414 images that con-
tained the queen were used to determine the average and maximal 
localization errors, which were 0.847 and 2.23 pixels, corresponding to 
56.7 and 149 μm.

Oviposition event candidates were detected through analysis of the 
queen’s motion patterns provided by her tracking. Image series cap-
tured ±10 s around these events were forwarded to a two-dimensional 
CNN that classifies whether an oviposition event occurred in the sin-
gle forwarded frames. These single-frame classifications were then 
stored in a classification vector from which we calculated whether an 
oviposition event occurred in the image series and when, within this 
image series, the oviposition occurred. The resulting daily dataset was 
then finally forwarded to a post hoc filtering algorithm that removes 

spatially isolated oviposition events as well as impossible oviposition 
events on the wooden frame of the comb.

Candidate events extracted from the observation data of 28 July 
were used for training the CNN. This resulted in 31,964 annotated 
images with a 400 pixel–by–400 pixel resolution, which were split 
up into 70% training data, 15% validation data, and 15% testing 
data. For real-world performance evaluation, independent testing 
data (in the form of candidate events extracted on the 10th of Octo-
ber) were used. This resulted in an overall performance of the pipe-
line of a precision of 0.9338, a recall of 0.9513, an accuracy of 0.9338, 
and an F1 score of 0.9425 {more information is given in the Supple-
mentary Materials [“Measuring the Oviposition Rate (Egg-Laying 
Rate) of the Queen”]}. This algorithmic pipeline was used to analyze 
a 30-day-long dataset from 20 September to 19 October.

The worker bee localization was achieved by BeeYOLOv8, a 
YOLOv8 (72) network that was fine-tuned to detect worker bees 
using comb images obtained from the AROBA system. The orienta-
tions of the bees are estimated with a CNN-based model. More de-
tails are given in the Supplementary Materials (fig. S2 and “Worker 
Bee Detection”). The model uses the bee images produced by the 
object detector as input. It outputs the sine and cosine of the angle of 
the bees. When used for court bee detection, the method achieves pre-
cision, recall, and F1 score values of 0.82, 0.84, and 0.83, respectively. 
The worker bee population estimation must include more crowded 
and cluttered areas of the comb, where the method achieves 0.887 pre-
cision, 0.470 recall, and an F1 score of 0.62. More details are described 
in the Supplementary Materials (“Worker Bee Detection,” “Court Bee 
Detection,” and “Establishing the Key Behavioral Metrics”).

Supplementary Materials
The PDF file includes:
Extended Materials and Methods
Tables S1 to S5
Figs. S1 to S17
Extended Discussion
Legends for movies S1 to S10
References (73–111)

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S10
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