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Simple Summary: This study addresses the challenge of accurately and efficiently moni-
toring honey production in beehives. Using high-resolution photographs captured under
controlled lighting with a commercial digital camera, we analyzed honeycomb images
with a deep learning model to automatically detect and quantify honey-filled cells as a
proportion of the total comb area. The deep learning system performed best in identifying
uncapped honey cells. Additionally, we validated the pixel-based classification results
against measured honey physical properties—including pH, conductivity, moisture content,
and color. Although the automated method revealed only weak correlations with these
physical parameters, the deep learning-based classification offers a promising solution for
real-time, scalable monitoring of hive productivity, supporting modern and data-driven
beekeeping practices.

Abstract: Traditional methods for assessing honey storage in beehives predominantly
rely on manual visual inspection, which often leads to inconsistencies and inefficiencies.
This study presents an automated deep learning approach utilizing the YOLOv11 model
to detect, classify, and quantify honey cells within Apis mellifera frames across monthly
sampling periods. The model’s performance varied depending on image resolution and
dataset partitioning. Using the free version of YOLOv11 with high-resolution images
(960 × 960 resolution) and a dataset split of 90:5:5 for training, validating, and testing, the
model achieved a mean average precision at IoU threshold of 0.5 (mAP@0.5) of 83.4% for
uncapped honey cells and 80.5% for capped honey cells. A strong correlation (r = 0.94)
was observed between the 90:5:5 and 80:10:10 dataset splits, indicating that increasing the
volume of training data enhances classification accuracy. In parallel, the study investi-
gated the relationship between the physical properties of honey and image-based honey
storage detection. Of the four tested properties, electrical conductivity (R2 = 0.19) and
color (R2 = 0.21) showed weak predictive power for honey storage area estimation, with
even weaker associations found for pH and moisture content. The honey storage areas via
90:5:5 and 80:10:10 datasets moderately correlated (r = 0.44–0.46) with increasing electrical
conductivity and color. Especially, electrical conductivity exhibited statistically significant
correlations with dataset performance across different dataset splits (p < 0.05), suggesting
some potential influence of chemical composition on model accuracy. Our findings demon-
strate the viability of image-based honey classification as a reliable technique for monitoring
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beehive productivity. Additionally, the research on image-based honey detection can be a
non-invasive solution for improved honey production, beehive productivity, and optimized
beekeeping practices.

Keywords: honeybee hive classification; deep learning; image processing; object detection;
YOLO; honey quantification; automated monitoring

1. Introduction
Beekeeping has been an important part of world agriculture and environmental

stewardship for centuries, with honeybees delivering valuable pollination services that
enhance food production and biological diversity [1]. Western honeybees (Apis mellifera)
play a vital role in maintaining agricultural ecosystems through pollination of flowering
plants, contributing significantly to global food production from crops used for human
consumption [2,3]. Given the global expansion of the beekeeping industry, a critical concern
for stakeholders is the implementation of routine physical inspections in accordance with
modern apicultural practices, particularly to ensure proper honey storage, maintain hive
health, and enhance the quality and marketability of bee products [4]. Monitoring the
health of honeybee colonies is crucial for sustainable beekeeping practices. Although
physical honeybee colony inspections during the summer are very important to encourage
honey production regarding time-based management, this practice should not be allowed,
as it causes subsequent disturbances during the major nectar flows [4].

Traditional beehive inspections on honey storage by beekeepers often rely on visual
estimation, which can be fast but inaccurate. The estimates of honey or nectar provision
per comb frame are obtained by subtracting the weight of the foundation and other com-
ponents (such as capped brood, larvae, and bee bread) from the total weight of the frame
without bees [5,6]. To enable new functionalities in precision beekeeping—such as honey
production monitoring, pollination optimization, and bee health assessment—developing
intelligent hives equipped with sensors for audio and image data analysis is considered
a best management practice [5–9]. As the cost of camera sensor systems decreases and
their capabilities improve, image acquisition in beehives still presents challenges. For
example, capturing high-quality images often requires the use of a wooden tunnel to
block external light [10], and inspections remain time-consuming and are not typically
conducted continuously. In addition, technological developments should incorporate an-
alytical overlays to provide beekeepers with precisely processed data. Although digital
images of honey and nectar cells can be successfully quantified using DeepBee© software,
(https://github.com/AvsThiago/DeepBee-source, accessed on 12 January 2025) the actual
weight of honey or nectar varies depending on the depth of the cells [10]. Consequently,
modern honeybee colony monitoring systems are expected to become more prescriptive,
providing data that is analyzed before being displayed to users. This will allow beekeep-
ers to process digital data more precisely, particularly when analyzing information from
multiple colonies to support informed decision-making.

In modern apiculture, as opposed to wild nests, beehives consist of several honeycomb
frames, where bees store brood, pollen, and honey [7]. Recent studies have addressed the
pollen detection in beehives as well as its color variation and textures using image-based
classification to enable suitable interventions and management strategies [7,11]. Counting
the comb cells with bee food reserves offers information on colony health status [10]. To
improve colony health assessments, methods such as CombCount, (https://github.com/
jakebruce/CombCount, accessed on 12 January 2025) a semi-automated brood counting
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tool, enhance accuracy by efficiently detecting empty comb cells and providing more
reliable estimates of brood area [12]. Furthermore, quantitative assessment of honey yield is
equally important, as it reflects the productivity of the hive and directly impacts economic
returns. Deep learning algorithms embedded in computer vision, which offer precise
automated honey detection, are considered the next step toward improving the beekeeping
industry by enabling researchers to analyze high-resolution photographs of honeycomb
structures through digital image processing [7,13]. Automated segmentation techniques
can estimate the proportion of comb cells filled with honey, offering a rapid and objective
alternative to manual counting. Precision apicultures are relying on image databases
and segmentation algorithms; however, deriving spectral signatures from low-resolution
images directly still gives limited information [13,14].

In precision beekeeping, images are commonly used to train convolutional neural
networks (CNNs), a technique widely adopted in deep learning algorithms for object
detection [15,16]. Object detection methods are generally categorized into one-stage and
two-stage approaches [17]. Redmon et al. (2016) [18] introduced YOLO (You Only Look
Once), a single-stage deep learning detection algorithm. The latest version, YOLOv11,
incorporates the C3K2 module to improve the accuracy of small object detection [19].
Previous CNN-based object detection models, such as ResNet and AlexNet [20], as well as
region proposal-based models like Faster R-CNN [21] and Mask R-CNN [22], have been
applied to computer vision-based honeybee inspections. While these two-stage models
rely on region proposals and deliver strong accuracy, YOLO’s single-stage architecture
enables it to perform object classification and localization within a single network, directly
extracting features to make predictions [17]. Additionally, the single-shot multibox detector
(SSD), another single-stage CNN algorithm, has been used in honeybee inspection systems.
However, SSD has shown inferior performance compared to YOLOv5 in detecting Varroa
destructor mites using image datasets [23]. Therefore, deep learning algorithms embedded
in computer vision, offering precise automated honey detections, are considered the next
step toward improved beekeeping industries.

Data augmentation is essential for enhancing the robustness of deep learning in
computer vision models [14,24], such as for honey and pollen cell detection. Especially,
detecting uncapped and capped brood, as well as honey cells, remains a challenging task
for automated computer vision algorithms. Earlier, the circular Hough transform (CHT)
demonstrated some capability in detecting honeybee cells [25,26]; however, bee comb cells
are naturally hexagonal in shape, not circular. To address this limitation, object-based detec-
tion using the CHT method was enhanced with semantic segmentation techniques, as imple-
mented in the free software DeepBee© (https://github.com/AvsThiago/DeepBee-source,
accessed on 12 January 2025, which can detect hexagon-shaped cells in bee combs [10]. The
detection methods used in Alves et al. (2020) [10] demonstrated high accuracy in identifying
honey cells by distinguishing between cells containing eggs, larvae, capped brood, pollen,
nectar, honey, and other materials. To improve feature extraction for hexagonally shaped
honey cells, data augmentation plays a crucial role in enhancing deep learning models in
computer vision [24]. The X-AnyLabeling v.2.5.3 tools, built on the PyPI package, support a
wide range of annotation shapes, such as freeform multi-vertex polygons, which facilitate
detailed data annotation and more accurate feature extraction of the YOLO base models.

Honey quality is influenced by various physical and chemical properties, including
pH, electrical conductivity, moisture content, and color. These parameters are often used
to assess honey’s freshness, stability, and purity, which depend primarily on the botanical
origin—determined through pollen analysis [27]—as well as on microbiological proper-
ties [28,29]. While these factors and conditions play a crucial role in the honey properties,
the extent to which the honey area—extracted from image segmentation—affects these
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properties remains unclear. Our aims were to (1) apply digital image processing and deep
learning to enhance precision beekeeping by determining the percentage of honey area
within the beehive, and (2) explore its relationship with physical parameters. The four
measured variables are pH, electrical conductivity (EC), moisture content, and color, which
could investigate the feasibility of applying the honey data via deep learning in honeybee
products and yield estimation. This information will help beekeepers and researchers
assess comb conditions in honeybee farms in Thailand, with potential applications in other
countries as well.

2. Materials and Methods
2.1. Dataset
2.1.1. Experimental Setup

The experiment was conducted over six months (July 2024–January 2025, except
October 2024), in Chiang Mai province, Thailand. The setup for this research involved
visits to three apiary locations (Figure 1): Agricultural Technology Promotion Center for
Economic Insects (coordinates: 18.73729, 98.92272), Chiang Mai Healthy Product Co., Ltd.,
193 (coordinates: 18.68635, 99.05318), and Faculty of Agriculture, Chiang Mai University
(coordinates: 18.79348, 98.96000). At each site, data were collected from queenright Apis
mellifera colonies, each consisting of 8 to 10 frames per colony. All locations were selected
for their active beekeeping practices and diverse colony compositions, which provided
ideal conditions for controlled data collection of every single frame, ensuring a robust
dataset for analysis.

 

Figure 1. Apiary locations (A) Agricultural Technology Promotion Center for Economic Insects,
(B) Chiang Mai Healthy Product Co., Ltd. (Chiang Mai, Thailand), and (C) Faculty of Agriculture,
Chiang Mai University.

2.1.2. Image Acquisition

To ensure consistent lighting conditions, a portable DIY wooden studio box (Figure 2)
was used along with a Flash Godox TT685 TTL. A digital camera, Sony A7R4, was employed
for image capture. The camera was placed 50 cm from the beehive, and image samples were
collected from the two-sided beehives. During the process, the studio box was closed on the
other sides to minimize external light interference. The images captured had a resolution
of 60 megapixels (9504 × 6336 pixels) without adult bees on the frame. In this study, four
A. mellifera colonies were selected from each site. From each colony, four frames were
chosen, resulting in a total of 16 frames per site. All selected frames were photographed on
both sides, yielding 96 images per visit across the three sites. Data collection was conducted
monthly using the same frames, resulting in a total of 464 high-resolution images over the
entire study. However, not all captured images were used for this study, as some frames
lacked honey and due to the flood event in Chiang Mai in October 2024 (Upper Northern
Region Irrigation Hydrology Center, https://www.hydro-1.net, accessed on 12 January

https://www.hydro-1.net
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2025). The final dataset that was analyzed consisted of 300 images that met the necessary
criteria for this research.

 

Figure 2. Experimental setups: (A) the Apis mellifera frame is placed on the holders inside the studio
box, (B) the researcher made adjustments to the camera before image capture, and (C) an example of
a frame from the image captured.

2.1.3. Image Annotation

A total of 300 images were annotated by using X-AnyLabelling v.2.5.3 and uploaded
into the Roboflow platform. The annotation of the images involved drawing a polygon
around the objects of interest and assigning object classes (Figure 3) to the polygon. Table 1
shows all of the different classes annotated in the dataset.

 

Figure 3. Comb by differentiating classes (A) uncapped honey cells, (B) capped honey cells, and
(C) others (empty cell, pollen, larva, and pupa).

Table 1. Class features annotated in the image dataset.

Class Description Number of Annotation

Uncap Polygon around the honey-uncapped cell 62,520
Cap Polygon around the honey-capped cell 607

Other Polygon around the area of the beeswax 300

To calculate the percentage of honey in a honeycomb, it is essential to capture both the
honey class and the total area of the honeycomb. While the honey class alone is sufficient
to identify the honey-filled cells, the total area of the honeycomb is needed to determine
the proportion of honey relative to the entire structure. To do this, we differentiate between
visible and uncapped types of honey cells as one of the three formal types of cells, which
was tested with machine learning algorithms [30].

The uncapped class has the highest number of instances because the selected images
exclusively feature honeycombs. Given that honeycombs consist of numerous cells, the
number of honey-filled cells is naturally high. After annotating and labeling all images,
they were exported to the YOLO format with the configuration [class_id x, y, w, h]. These
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parameters are used to represent an object in a computer vision system. The annotation
files were saved with the same names as the images, and the configurations for the file
paths that feed the model for training, validating, and testing were then saved in a YAML
file. Figure 4 shows an example of an annotation image on Roboflow.

 

Figure 4. Data annotation consists of uncap (cyan polygon), cap (white polygon), total (blue polygon)
from the frame sample ID: _DSC5335 (20 December 2024).

2.1.4. Data Augmentation

Before model training, the annotated dataset was preprocessed and resized to five
distinct dimensions: 960 × 960, 800 × 800, 640 × 640, 512 × 512, and 256 × 256 resolution.
This resizing ensured compatibility with the input requirements of the pre-trained models.
Additionally, data augmentation techniques were employed to increase the dataset size
and improve generalization by reducing the risk of overfitting. These techniques create
new training examples for your model to learn from by generating augmented versions of
each image in your training set. Such as flipping, rotating, and altering image properties, a
process that effectively enhances dataset diversity. Table 2 summarizes the preprocessing
and augmentation settings applied.

Table 2. Preprocessing and augmentation were implemented on the dataset.

Category Techniques Used Description

Preprocessing

Auto-orient Ensured all images were correctly oriented
Resize Stretched images to 960 × 960 pixels

Auto-adjust contrast Applied Adaptive Equalization for contrast
Filter Null Ensured all images contained annotations

Augmentation

Flip Horizontal flipping
Hue Between −5◦ and +5◦

Saturation Between −10% and +10%
Brightness Between −10% and +10%
Exposure Between −5% and +5%

Noise Up to 1% of the pixels
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2.2. Object Detection Model
Model Training and Validation

This study utilized YOLOv11s-seg frameworks for object detection and instance
segmentation. The dataset was divided into training portions (90%, 80%, 70%), validating
portions (5%, 10%, 15%), and testing portions (5%, 10%, 15%) with three subsets; 90:5:5,
80:10:10 and 70:15:15. YOLOv11, the latest version of the YOLO algorithm, released by
Ultralytics on 30 September 2024 was used.

The training was conducted on an NVIDIA GeForce 3070 laptop GPU with 8 GB
of GDDR6 memory, NVIDIA Ampere with 5120 CUDA Cores, and 40 RT Cores with
significantly low TOPS (~20–25 TFLOPS FP32) but still capable of AI tasks. Pretrained
weights from the COCO dataset were leveraged to accelerate and improve the training
process. The model was trained using various combinations of input image sizes and
batch sizes and tested across multiple YOLOv11 architectures as previously described. The
input image sizes included 960 × 960, 640 × 640, 512 × 512, and 256 × 256 pixels, while
batch sizes of 4. The performance of these combinations was evaluated to determine the
optimal model and parameter settings for real-time applications. To eliminate this source
of variance and enable direct performance comparison, we fixed all training runs to exactly
200 epochs, regardless of individual early-stop points.

2.3. Data Extraction

After predicting the image, we extract the segmented area of each class from the
predicted image and measure its region properties using the scikit-image. This process
enables the calculation of the honey percentage by analyzing the honey area in pixels.
Figure 5 shows an example of an extracted data plot by matplotlib.

 
Figure 5. Extracted data from sample ID: _DSC5335 (20 December 2024) (A) capped honey cells,
(B) uncapped honey cells, and (C) others. Yellow represents the extracted regions of interest, and
purple indicates the background.

2.4. Performance Metrics

After completing the training and validation phases, the performance of the models
is assessed by testing them on a designated test dataset. Selecting appropriate evaluation
metrics for object detection models can be complex.

2.4.1. Precision and Recall

Precision measures the proportion of correctly predicted instances, reflecting the
model’s reliability in producing accurate predictions. Recall, on the other hand, quantifies
the proportion of relevant instances correctly identified by the model. These metrics are
calculated using the following equations:

P = TP/(TP + FP) (1)
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R = TP/(TP + FN) (2)

Here, TP represents true positives (correctly detected objects), FP indicates false
positives (incorrectly predicted objects), and FN denotes false negatives (missed detections).
A detection is classified as a TP if the Intersection over Union (IoU) between the predicted
bounding box and the ground truth exceeds a predetermined threshold (commonly 0.5).
Otherwise, it is considered an FP.

2.4.2. Average Precision and Mean Average Precision

Average precision (AP) is computed as the area under the precision-recall curve, as
defined by the following:

AP =
n−1

∑
k=0

[Recall(k)− Recall(k + 1)]× Precision(k) (3)

In Equation (3), n denotes the total number of discrete precision–recall evaluation
points (one for each unique detection-score threshold), and k indexes each of those points
from 0 to n–1. The IoU, which evaluates the overlap between the detected and actual
bounding boxes, is given by the following:

IoU =
Area o f Overlap between Object and Detected Box
Area o f Union between Object and Detected Box

(4)

The AP score ranges between 0 and 1, providing a single value that summarizes
precision across recall levels. Mean average precision (mAP) is calculated as the mean of
AP values across all object classes:

mAP =
1
n

n

∑
i=1

APi (5)

In this expression, n refers to the total number of object classes under evaluation, and
i runs from 1 to n, indexing each class’s individual average-precision score (AP1. . .APn)
before they are averaged to yield mAP. Object detection models often use two mAP thresh-
olds: mAP@0.5 (the mean AP for an IoU threshold of 0.5) and mAP@0.5:0.95 (the mean AP
averaged over IoU thresholds from 0.5 to 0.95). In this study, the performance of all selected
models was evaluated using precision, recall, and mAP@0.5, which are widely recognized
as standard benchmarks for evaluating object detection models.

2.4.3. Honey Area Acquisition and Dataset Fittings Along Linear Regression Line

The percentage of honey area was computed by comparing pixel counts of honey
presence to the total hive area. This method aligns with ongoing research in automated
beehive monitoring by the following equation:

Honey area (%) = [(Capped + Uncapped)/Total]× 100 (6)

Image datasets were processed to retrieve pixel data from different sides of the hive
(Side A, Side B, and Both Sides) contribute to the calculation of honey area percentage
(Supplementary Table S2). Here, we selected the 960 × 960 resolution because it gives the
highest mAP@0.5 results (Table 3, Figure 6). When the model with 960 × 960 resolution
was trained and tested under three different data-splitting schemes: 90:5:5, 80:15:15, and
70:15:15, the scatter plot compared the percentage of honey area estimated by one dataset
split on the x-axis to another split on the y-axis. The fitted regression lines, along with
their corresponding slopes, intercepts, the Pearson correlation coefficient (r), coefficient of
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determination (R2), and p-values, quantified how well these different splits agree with each
other (Figure 7).

Table 3. Summary of mAP@0.5 from model training results based on image resolutions and
data splitting.

Input
Resolution

Dataset
(Training:

Validating: Testing)

mAP@0.5
Uncapped Honey Cells Capped Honey Cells

Box Mask Box Mask

960 × 960
90:5:5 0.834 0.743 0.805 0.805

80:10:10 0.830 0.725 0.749 0.730
70:15:15 0.777 0.634 0.659 0.635

800 × 800
90:5:5 0.842 0.513 0.775 0.681

80:10:10 0.810 0.530 0.655 0.568
70:15:15 0.774 0.482 0.604 0.618

640 × 640
90:5:5 0.773 0.434 0.790 0.720

80:10:10 0.756 0.437 0.639 0.616
70:15:15 0.709 0.405 0.591 0.547

512 × 512
90:5:5 0.655 0.273 0.685 0.638

80:10:10 0.658 0.280 0.590 0.552
70:15:15 0.597 0.255 0.559 0.582

256 × 256
90:5:5 0.229 0.028 0.505 0.378

80:10:10 0.234 0.034 0.415 0.363
70:15:15 0.209 0.028 0.428 0.466

2.5. Assessment and Measurement of Honey Physical Parameters in Honeybee Hives

We took 20 mL of the honey sample from each beehive after the photography to test
four physical parameters. Since the pH of honey influences its flavor profile, fermentation
rate, and microbial stability, and moisture content is a key parameter influencing honey’s
shelf life, viscosity, and susceptibility to fermentation [31]. Electrical conductivity provides
insights into the mineral and organic acid content of honey [32] and also help identify
adulteration or contamination, thus ensuring honey purity [33]. Color is one of the key
indicators of honey type that is often linked to floral origin and consumer preference. This
measurement supports both quality control and product marketing [34]. Here, we tested
pH, EC, moisture content, and color for all honey samples, then fit them in the linear
regression with estimated honey storage areas provided from data-splitting schemes: 90:5:5,
80:15:15, and 70:15:15.

2.5.1. pH Measurement

The pH of honey samples was measured under controlled laboratory conditions using
a digital benchtop pH meter (SUNTEX SP-2100, Taipei, Taiwan). The meter comprises a
sensitive electrode probe and a digital display unit, allowing precise and rapid measure-
ment of honey samples or hive-derived fluids. For each honey sample, four grams of honey
were mixed with 30 mL of DI water until a homogeneous solution was obtained. The pH
was then measured, with three replications performed for each sample.

2.5.2. Electrical Conductivity (EC)

The HI99300 Hanna meter (Hanna Instruments, Nusfalau, Romania) was used to
measure the EC of honey using a sample of four grams dissolved in 20 mL of DI water. These
portable meters feature a probe that detects the ionic content of the solution, displaying
results in millisiemens per centimeter (mS/cm) or parts per million (ppm).
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2.5.3. Moisture Content

A digital handheld honey refractometer (ATAGO PAL-22S, Tokyo, Japan) was em-
ployed to measure the moisture content. In this device, a small sample of honey is placed
on the sensor, and an internal light source measures the refraction of the sample, which is
then correlated to moisture or Brix values.

2.5.4. Color Measurement

The HI96785 Honey Color Photometer (Hanna Instruments, Nusfalau, Romania)
measured the honey color on the Pfund scale, which ranges from water-white to dark
amber. This device uses a tungsten lamp and a silicon photodetector to determine the
transmittance of the sample, thereby classifying the honey’s color.

3. Results
3.1. Model Performance

The model’s performance in detecting capped and uncapped honey cells was eval-
uated across different image sizes and data splits using mAP@0.5 as the primary perfor-
mance metric. A dataset of 300 images was used to assess the effectiveness of the models
under varying conditions. Table 3 and Figure 6 show the impact of image resolution
and data split on model performance for detecting uncapped and capped honey cells,
where the 960 × 960 resolution of input images depicted more mAP@0.5 values than the
other resolutions.

Figure 6. Testing accuracy according to the different image input sizes: (A) bounding box, and
(B) mask.

3.2. Comparison of Honey Area Estimates Among Different Datasets

Figure 7 illustrates the relationships among the honey area predictions. In Figure 7A, the
regression between the 90:5:5 and 70:15:15 is described by the equation y = 0.7103x + 2.8094.
The correlation coefficient (r = 0.81) and the coefficient of determination (R2 = 0.66).
In Figure 7B, the analysis comparing the 80:10:10 and 70:15:15 yielded the regression
line y = 0.9701x − 0.2051 with a correlation coefficient of r = 0.81 and R2 was 0.66. In
Figure 7C, a comparison between the 90:5:5 and 80:10:10 obtained the regression equation
y = 0.8955x + 1.0858, along with a correlation coefficient of r = 0.94, indicating a strong
linear relationship. The equality line (y = x) fitted well to this data-splitting scheme (R2

value of 0.87, p < 0.01), near one-to-one correspondence, which demonstrates that the
80:10:10 split yielded predictions that are highly consistent with those of the 90:5:5 split.
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Figure 7. Honey areas estimated from the selected 960 × 960 resolution splits (A) 90:5:5 vs. 70:15:15,
(B) 70:15:15 vs. 80:10:10, and (C) 80:10:10 vs. 90:15:15. The equality line (gray dashed line) indicates a
1:1 relationship.

3.3. Relationship Between the Physical Parameters of Honey and the Honey Area

Figure 8 illustrates relationships between honey area and the four physical parameters
(pH, EC, moisture content, and color) to determine whether areas of honey impact these
measurable physical properties. By analyzing the correlation, regarding to the Pearson
correlation coefficient values, the honey areas estimated from all data-splitting schemes
revealed the negative trends to the pH (r values range from −0.12 to −0.24) and mois-
ture content (r values range from −0.16 to −0.17) whereas EC (r = 0.28–0.44) and color
(r = 0.30–0.46) showed the positive trends. Especially, the 80:10:10 and 90:15:15 datasets
were more positively or negatively correlated than the 70:15:15 dataset (Figure 8). The weak-
moderate linear relationships between honey areas and physical parameters are shown in
EC and color. These R2 results (R2 ≈ 0.2 for 80:10:10 and 90:15:15) provide insights into
whether the honey area can serve as a predictive honey property for EC and color.

Figure 8. Correlation between honey area (%) and physicochemical properties of honey (A) pH
vs. honey area (%), (B) electrical conductivity (ms · ppt) vs. honey area (%), (C) moisture content (%
brix) vs. honey area (%), and (D) color (mm) vs. honey area (%).
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4. Discussion
4.1. Model Performance and Scalability

Higher resolutions (960 × 960, 800 × 800) with a 90:05:05 split yielded the best results,
while lower resolutions reduced accuracy. Bounding box detection outperformed segmen-
tation masks, especially for uncapped cells, though segmentation remained competitive
at higher resolutions. Although the recommended 640 × 640 resolution was previously
recommended and efficient, the accuracy analysis of capped honey areas is usually low
because the capped honey areas are highly complex due to the layer of wax [13]. A larger
and more diverse dataset would improve the generalization of the model, making it more
robust in different conditions. In large-scale apiaries, optimized hardware and refined data
acquisition strategies are essential for the practical application to manage the increased
data volume effectively [35,36]. We also note that integrating cameras within hives requires
more appropriate non-invasive methods to minimize disturbances to bee colonies because
collecting data from a high number of beehives could increase disturbances during data
capture, as the combs must be lifted and then replaced. However, this approach could
yield a greater volume of input data for deep learning techniques to generate meaningful
insights. While our method is suitable for small-scale farms, where the number of beehives
ranges from 5 to 50 [4], we suggest that improvements in in-hive sensors and digital data
processing from the hive environment are essential to minimize disturbance of the colony’s
honeycombs. In addition, the computational resources are limited to the NVIDIA RTX 3070
laptop GPU, which limits the ability to train large models with higher-resolution images
and more complex architectures.

The analysis of the honey area estimates across the different data splits provides a
robust evaluation of the model’s consistency. As illustrated in Figure 7, the corelations from
three distinct splits highlighted strong relationships as evidenced by the high correlation
coefficients; r = 0.94 for 90:5:5 versus 80:10:10, r = 0.81 for 90:5:5 versus 70:15:15, and
r = 0.81 for 80:10:10 versus 70:15:15. These comparisons also revealed statistically significant
p-values, below the 0.05 threshold. The highest R2 with the value 0.84, p < 0.01 indicates
that two data splits (90:5:5 versus 80:10:10) consistently captured the overall honey areas.

4.2. Association Between Regional Factors and Honey Quality Parameters

The results indicate that the honey area quantified via deep learning segmentation
presents varied relationships with the physical parameters of honey. In Figure 8A, the pH
of honey exhibits weak negative correlations with the honey area (ranged from −0.12 to
−0.24) with low R2 values (0.05, 0.06 and 0.01, in 90:5:5, 80:10:10 and 70:15:15, respectively)
and their p-values less than <0.05, indicating that the acid content is largely independent of
the spatial extent of honey within the comb. This suggests that the acidity is predominantly
determined by the intrinsic chemical composition of the nectar rather than by the extent
of honey deposition in the comb. Previous studies have shown that floral origin and
the organic acids present (e.g., gluconic acid) strongly influence honey pH [31,34,37,38].
Similarly, in Figure 8C, moisture content appears nearly unaffected by the honey area, with
an R2 value below 0.03 and p-values exceeding 0.05. This result aligns with findings that
moisture levels are mainly controlled by environmental conditions during nectar collection
and post-harvest processing rather than by the spatial deposition of honey [31,33,37].
In contrast, in Figure 8B, electrical conductivity shows a modest relationship and gives
positive correlation (R2 = 0.19, r ≈ 0.45, p < 0.05, except dataset 70:15:15), implying that
larger honey areas may be associated with a slight increase in mineral and organic acid
content. This observation is in line with external research indicating that darker honeys,
which typically have higher mineral contents, also exhibit higher conductivity [32,33,39].
Furthermore, in Figure 8D, the color of honey demonstrates a moderate relationship with
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the honey area (R2 = 0.21, r ≈ 0.45, p < 0.05, except dataset 70:15:15). Honey color is widely
recognized as an indicator of both floral source and mineral content [33,35]. Additional
studies have confirmed that darker honeys generally contain higher levels of pigments and
phenolic compounds, contributing to both color intensity and antioxidant capacity [39,40].
Overall, the method for detecting areas of honey is being improved via the automated
image-based quantification, which offers a rapid and non-invasive tool for hive monitoring.
However, the relationship between the honey area versus the physical parameters of honey
is limited. The moderate correlations observed between electrical conductivity and color
suggest that further refinement is needed. This aligns with previous findings indicating
that honey characteristics are influenced by the nectar source [41,42]. As this study focuses
on the physical properties of multifloral honeys, future work should aim to more precisely
characterize honey samples. Subsequently, the current image-based protocol could be
applied to both monofloral and multifloral honeys. This approach may provide valuable
supplementary information and support the development of automated methods while
maintaining high model accuracy. The weak correlations for pH and moisture content
reinforce the necessity of combining image analysis with other direct physio-chemical
measurements for a comprehensive evaluation of honey quality. Measuring sugar content
may be one of the key nutrient factors [43] that could help in enabling a relationship to
honey classifications via image processing.

Furthermore, combining the plant sources based on floral pollen identification and the
nutrients in honey may help for impressive results to detect incoming honey quantity in
honeybee colonies. Therefore, we recommend deploying such systems to progressively test
during production phases, which does not measure the periods where the bees are hungry
or dying due to dependence on physical properties of honey, thereby improving honeybee
farm management and promoting sustainable apiculture practices.

5. Conclusions
The deep learning approach based on YOLOv11 has proven highly effective for the

automated classification of honeycomb structures. When trained using high-resolution
images (960 × 960 pixels) and an optimal dataset split of 90:5:5, the model achieved a
mAP@0.5 of 83.4% for uncapped honey cells and 80.5% for capped honey cells. These
results are due to image quality in enhancing classification accuracy. The linear regression
analyses showed the weak relationships between the quantified honey area and the four
physical parameters of honey, which can ultimately make it difficult to interpret the quality
and efficiency of honey production. The moderate-weak parameters are conductivity and
color, suggesting that these properties are primarily determined by color image-based
measurements that provide supplementary insights into the honey’s color indicator.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/insects16060575/s1; Table S1. Physical parameter and image-processed
parameters (honey area estimation from beehive); Table S2. Full image-processed parameters estima-
tion in pixels (honey area estimation from the beehive).
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YOLO You Only Look Once
AI Artificial Intelligence
mAP Mean average precision
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RGB Red, Green, Blue
R2 Coefficient of determination
r Correlation coefficient
P Statistical significance
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