agriculture

Article

An Al-Based Open-Source Software for Varroa Mite Fall
Analysis in Honeybee Colonies

Jests Yaniz 1+ Matias Casalongue
Beeguards Consortium 1, Pilar Santolaria !

check for

updates
Academic Editors: Atanas Atanasov
and Zlatko Puskadija

Received: 18 March 2025
Revised: 25 April 2025
Accepted: 26 April 2025
Published: 29 April 2025

Citation: Yaniz, J.; Casalongue, M.;
Martinez-de-Pison, EJ.; Silvestre,
M.A.; Consortium, B.; Santolaria, P.;
Divason, J. An Al-Based Open-Source
Software for Varroa Mite Fall Analysis
in Honeybee Colonies. Agriculture
2025, 15, 969. https://doi.org/
10.3390/ agriculture15090969

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

1 2

, Francisco Javier Martinez-de-Pison 2(*, Miguel Angel Silvestre 3(,

and Jose Divasén 4

BIOFITER Research Group, Environmental Sciences Institute (IUCA), Department of Animal Production and
Food Sciences, University of Zaragoza, 22071 Huesca, Spain; macasalongue@gmail.com (M.C.);
psantola@unizar.es (P.S.)

Department of Mechanical Engineering, University of La Rioja, 26004 Logrofio, Spain; fimartin@unirioja.es
Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia,

46100 Burjassot, Spain; miguel.silvestre@uv.es

Department of Mathematics and Computer Science, University of La Rioja, 26006 Logrofio, Spain;
jose.divason@unirioja.es

Correspondence: jyaniz@unizar.es

Abstract: Infestation by Varroa destructor is responsible for high mortality rates in Apis
mellifera colonies worldwide. This study was designed to develop and test under field
conditions a new free software (VarroDetector) based on a deep learning approach for the
automated detection and counting of Varroa mites using smartphone images of sticky boards
collected in honeybee colonies. A total of 204 sheets were collected, divided into four frames
using green strings, and photographed under controlled lighting conditions with different
smartphone models at a minimum resolution of 48 megapixels. The Varroa detection
algorithm comprises two main steps: First, the region of interest where Varroa mites must
be counted is established. From there, a one-stage detector is used, namely YOLO v11
Nano. A final verification was conducted counting the number of Varroa mites present on
new sticky sheets both manually through visual inspection and using the VarroDetector
software and comparing these measurements with the actual number of mites present
on the sheet (control). The results obtained with the VarroDetector software were highly
correlated with the control (R? = 0.98 to 0.99, depending on the smartphone camera used),
even when using a smartphone for which the software was not previously trained. When
Varroa mite numbers were higher than 50 per sheet, the results of VarroDetector were
more reliable than those obtained with visual inspection performed by trained operators,
while the processing time was significantly reduced. It is concluded that the VarroDetector
software Version 1.0 (v. 1.0) is a reliable and efficient tool for the automated detection and
counting of Varroa mites present on sticky boards collected in honeybee colonies.

Keywords: honeybee; Apis mellifera; Varroa mites; Varroa diagnosis; artificial intelligence;
YOLO; deep learning; smartphone

1. Introduction

Honeybees are among the most essential pollinators, contributing significantly to the
reproductive success of both cultivated and wild plant species [1,2]. Their role in agricul-
tural ecosystems is particularly relevant. It has been estimated that nearly 70% of all crop
species globally rely on bees to some extent for successful pollination, underscoring their im-
portance in food production [1]. However, in recent years, alarming reports of widespread
colony losses have emerged, raising serious concerns among scientists, policymakers, and
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the general public regarding the long-term viability of honeybee populations [3-5]. The
causes of this decline include pests and diseases, bee management, including beekeeping
practices and breeding, the change in climatic conditions, agricultural practices, and the
use of pesticides [6]. The decline of these pollinators could have profound ecological and
economic consequences, necessitating urgent research and conservation efforts to mitigate
potential impacts.

Among the sanitary causes of colony losses, infestation by the ectoparasitic mite Varroa
destructor (hereafter Varroa) represents the most critical pathogenic threat to the western
honeybee, Apis mellifera, on a global scale [7-9]. Following its worldwide dissemination
between the 1950s and 1990s, Varroa has profoundly disrupted apicultural practices and
economic viability [8]. The mite is an obligate parasite of honeybee colonies, exhibiting
a reproductive cycle tightly synchronized with host brood development. It feeds on the
hemolymph and fat body tissue of both developing and adult bees [10]. As a consequence,
it reduces honeybee weight, immune responses, and lifespan and alters the flying and ori-
entation abilities of foragers [11,12]. Furthermore, Varroa also acts as an efficient biological
vector for multiple honeybee viruses [8,11]. The synergistic effects of viral opportunism and
exponential mite proliferation often culminate in lethal viral outbreaks, typically leading to
colony collapse within two to three years [8].

Given that the eradication of varroosis does not appear to be a realistic goal, control
measures to mitigate its negative impact are essential. In any control strategy, monitoring
the level of Varroa infestation is fundamental. One of the most common monitoring methods
is analyzing the natural mite fall onto sticky boards placed at the bottom of the hive [9,13,14].
This method offers several advantages over other diagnostic options, because (1) it avoids
colony disruption and handling or harming bees, (2) it is widely recognized as the most
accurate and consistent approach for estimating the total mite population, as it provides a
comprehensive assessment of the entire colony rather than relying on a limited bee sample,
(3) it enables a rapid and accurate evaluation of the effectiveness of treatments against
Varroa, and (4) it is particularly useful for detecting and selecting Varroa-resistant colonies
across a large number of hives [7].

Varroa mite counting on sticky boards is typically performed by visual inspection
and demands substantial time and effort. Moreover, the small size of the mites (about
1-1.8 mm long and 1.5-2 mm wide), the presence of debris, and the potentially high mite
density further complicate accurate counting, making the method prone to errors and in-
consistencies [9]. The challenges associated with Varroa mite detection underscore the need
for developing advanced technologies capable of rapidly and accurately estimating mite
populations [15]. In this context, artificial intelligence (Al)-based systems are particularly
well-suited for image-based diagnostics. These techniques utilize deep learning algorithms
trained on large datasets to identify patterns and morphological features that may be
challenging to detect with the human eye and with traditional computer vision techniques.
However, little research has been carried out aiming to automatize Varroa mite detection
and counting on adult honeybees [16-19], pupae [20], and bottom boards [21,22]. Moreover,
in some cases, the results were not satisfactory, some are commercial, and most of them re-
main at the prototype stage and have not been properly validated in the field. The objective
of this study was to develop and test under field conditions a new free software (VarroDe-
tector) based on a deep learning approach for the automated detection and counting of
Varroa mites using smartphone images of sticky boards collected in honeybee colonies. To
this end, VarroDetector combines image processing techniques and a lightweight neuronal
network to detect Varroa mites from sticky sheets, even under the presence of debris and
high mite density. This standalone solution delivers precise detection without requiring
internet connectivity or cloud computing resources. Designed for efficiency, and being a
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free tool compatible with widely used commercial smartphones and computers, it can be
highly beneficial for beekeepers, technicians, and researchers.

2. Materials and Methods

The experiment was carried out between October 2024 and March 2025 in two commer-
cial apiaries in Aniés (Huesca, Spain), comprising a total of 70 Langstroth hives equipped
with modified bottom boards with mesh floor and with varying levels of Varroa infestation.
During the trial, a sticky sheet was placed beneath each beehive for four days to collect
naturally fallen Varroa mites. A total of 204 sheets were collected and transported to the
laboratory, where they were photographed under controlled lighting conditions.

2.1. Image Acquisition

The sheets were numbered with the colony number and divided into four frames
of 23.5 x 18.5 cm using green strings (Figure 1). Each frame was photographed either
with an iPhonel4 Pro Max (Apple Inc., Cupertino, CA, USA, using iOS 18 software) at
48 megapixels and with a Xiaomi Poco X5 Pro (Xiaomi Inc., Beijing, China, using Android
14 software) at 108 megapixels. The images exhibited a highly variable number of Varroa
mites, ranging from 1 to 351.

Figure 1. Example images of a sticky sheet divided in four frames (photographs).

2.2. Dataset Description

The dataset comprised 357 images containing Varroa obtained from 90 of sticky sheets.
These images were randomly divided into approximately 80% for training and 20% for
validation, ensuring that the proportion of Varroa mites remained consistent across both sets.
More than 10,000 and 3000 Varroa were analyzed for training and validation, respectively.
All images were manually annotated by experts, who delineated each Varroa mite using
bounding boxes.
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2.3. Algorithm Description

The Varroa detection algorithm comprises two main steps: First, the region of interest
where Varroa mites must be counted should be established. The images contain green strings
that divide the sticky board into frames, and the developed models first detect these strings
in the image. This process involves color-based image filtering followed by the application
of the Hough transform to identify two perpendicular lines that delineate the counting
area. Subsequently, the software identifies Varroa mites within the designated area rather
than across the entire image to avoid counting the same Varroa in different images. For this,
a one-stage detector is used, namely YOLO v11 Nano, a state-of-the-art lightweight neural
network architecture containing approximately 2.6 M parameters that has demonstrated
broad applicability across multiple domains. This neural network is employed, since it
provides good accuracy with very high speed, which is important, since the goal is to allow
inference on standard computers without a graphics processing unit (GPU). In particular,
YOLOvV11 was launched in September 2024 and was the last available version at the time
of research. It follows the principles of the outstanding paper [23], where the well-known
YOLO architecture [24] was presented for the first time, but this version introduces novel
components, like a computationally efficient implementation of the cross-stage partial
(CSP) bottleneck, for improving feature extraction and also an attention mechanism (CSP
with spatial attention, named C2PSA) that allows the model to focus more effectively on
important regions in the image. All this within a nano architecture [25], which incorporates
improvements, such as residual projection—expansion—projection macroarchitectures to
significantly reduce the number of parameters and the complexity of the network.

Figure 2 depicts the architecture diagram of the YOLOv11 network. The network
comprises three main components: backbone, neck, and head. The backbone essentially
functions as a feature extraction network that processes input images to derive hierarchical
visual representations. The neck consists of intermediate layers that connect the backbone
to the head, enhancing feature fusion across different scales. The head is the final detection
layer that takes features from the neck and outputs the final predictions. The backbone
incorporates multiple convolutional layers frequently followed by C3K2 blocks—an ar-
chitectural innovation designed to improve feature aggregation. The architecture also
incorporates a new spatial pyramid pooling—fast (SPPF) layer to perform multi-scale
feature extraction by applying max-pooling operations at different kernel sizes to capture
information at various receptive fields in a more efficient way than the original SPP. The
architecture additionally utilizes skip connections (pathways that allow information to
bypass one or more layers), which enable the network to preserve and utilize features from
earlier layers, combining low-level details with high-level semantic information.

A diagram of the workflow of the application is depicted in Figure 3. A brief
summary follows:

e Step 1: Conversion from RGB to HSV colorspace is performed, followed by string
color filtering of the image.

e  Step 2: Morphological operations (erosion and dilation) are applied to refine the
filtered result.

e  Step 3: Edge detection is applied via the Canny algorithm.

e  Step 4: Hough transform is utilized for straight line detection.

e  Step 5: The resulting segments are sorted by length, with the longest segments se-
lected. These segments are extended to the image boundaries. Intersection points are
calculated, and segments forming approximately 90-degree angles are preserved and
drawn as complete lines to the edges in a binary image.

e Step 6: Contour detection is performed, resulting in the delimitation of four
distinct regions.
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e  Step 7: The largest region is isolated and converted to a binary mask (white pixels on
black background).

e  Step 8: The generated mask is applied to the original image for selecting the region of
interest within the strings.

e  Step 9: Predictions are made with the YOLO deep learning model.

YOLOv11 Architecture (Nano)
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Figure 2. Architecture diagram of the YOLOv11 network used in this article.
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Figure 3. Diagram of the workflow of the VarroDetector software.
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Figure 4 illustrates the processing workflow applied to a representative image, demon-

strating each transformation stage.

Step 6 Step 7 Step 8 Step 9 (final output)
Figure 4. Workflow of the VarroDetector software applied to one image.

The neuronal network was trained on the training set for 500 epochs, with an early
stopping criterion if there was no improvement in 50 epochs. The input image size of the
network was chosen to be 8000, instead of the default 640 value. This choice allowed the
network to detect small objects as the Varroa mites, though with significant computational
demands that were mitigated through the use of a nano network and single-image batch
processing. Data augmentation (standard changes in scale, saturation, color, brightness,
and flips) and regularization techniques (dropout = 0.05 and weight_decay = 0.001) were
employed to enhance model robustness. Validation images were used during the model
training process to tune the hyperparameters and choose the best model. The trained model
obtained a precision of 0.925, a recall of 0.921, and a mean average precision (mAP) score of
0.956 on the validation set [26].

The code is open-source and is available at https:/ / github.com /jodivaso/varrodetector
(accessed on 25 April 2025). The code has been developed using the Python language. The
aforementioned repository also contains stand-alone executables for Windows and Linux.
The software needs neither installation nor internet connection to be used. A representative
sample of the sticky sheet images are also provided in the aforementioned webpage.

2.4. Software Interface

The software features an intuitive user interface, as illustrated in Figure 5, and can be
used by any user without the need of computer or Al skills. Based on Figure 5, the main
parts of the interface are enumerated:

(1) Select input folder: A button to allow users to select a folder containing the images to
be analyzed. If the folder includes subfolders, the program recursively also processes
all images within the directory. This functionality is particularly useful for analyzing
multiple sticky sheets simultaneously, especially when each sheet’s four images are
stored in separate subfolders.


https://github.com/jodivaso/varrodetector
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Save button: The program allows to export statistical data in CSV format. Additionally,
annotated images with detected mites and their corresponding labels are saved in
YOLO format.

Help button: This button displays information about the application and a guide
about the basic controls and functionality available.

Image viewer: The program employs the YOLO neural network to detect Varroa mites
and displays the processed image with detected bounding boxes marked on the right
panel. Users can zoom and pan within the image and manually adjust detections by
adding, modifying, or removing identified Varroa mites.

Threshold slider: The detection sensitivity can be adjusted using a confidence slider,
which controls the neural network’s prediction threshold confidence. This threshold
can be modified per image or applied uniformly across all images. Lower confidence
levels increase detections but may also introduce more false positives.

Region of interest (ROI): The software allows the user to restrict the area to count
mites. This may be used, for example, in rare instances where string recognition fails.
Statistics panel: This panel provides key information, including the total number
of Varroa mites detected across all images, the number of mites within the same
subfolder as the selected image (representing a single sheet), and the count of mites in
the currently selected image.

List of images: This panel provides the names of the images that have been analyzed
and allows the user to select which image to display in the image viewer. The selected
image is marked on a dark blue background, whereas those images contained in the
same subfolder are marked in light blue.

Aasisis complte

Figure 5. Interface of the VarroDetector software. (1) Select imput folder button, (2) Save button,
(3) Help button, (4) Image viewer, (5) Threshold slider, (6) Region of interest, (7) Statistics panel,
(8) List of images. Varroa mites detected by VarroDetector are shown in red.

2.5. Verification (Testing)

The reliability of the VarroDetector software was tested capturing new images of

114 sticky sheets, since new images unseen by the underlying model are needed for a fair

testing. To assess the repeatability of the results generated by the VarroDetector software,
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each of the 114 sheets captured using the Xiaomi smartphone was analyzed in the following
three distinct orientations: the original orientation, rotated 90°, and rotated 180°.

A final verification was conducted aiming to evaluate the accuracy of the VarroDetector
software in counting Varroa mites compared to visual inspection conducted by human
observers. To this end, new images of 114 sticky sheets were captured, since new images
unseen by the underlying model are needed for a fair testing. The number of Varroa mites
present on new sticky sheets across different beehives and sampling dates was counted both
manually through visual inspection and using the VarroDetector software, using the default
threshold. The images were captured with the two smartphone cameras previously used
for neural network training (iPhone 14 Pro Max and Xiaomi Poco X5 Pro) and an additional
smartphone (Samsung Galaxy S24 Ultra, Suwon, Republic of Korea; at 50 megapixels), for
which the VarroDetector had not been previously trained. Additionally, the time required
for visual counting and for the automatic analysis with the VarroDetector was recorded.

Visual inspection was carried out by three experienced operators to evaluate the
reliability of the results and determine whether the accuracy of visual inspection was
influenced by the operator. The accuracy of both the VarroDetector and visual inspection
was assessed by comparing the number of Varroa mites detected by each method to the
actual number of mites present on the sheet (control). This reference value was established
through a cross-check between the VarroDetector output and visual observation. After
the analysis with the VarroDetector, each image was selected by a trained operator, who
magnified the image on the screen, and then added, removed, or confirmed the identified
mites using the edition capacities of the software. In cases of uncertainty, a direct visual
inspection of the sheet was performed using magnifying glasses.

2.6. Statistical Analysis

Statistical analyses were performed using the SPSS package, version 24.0 (IBM SPSS
Statistics, Chicago, IL, USA). In the verification (testing), various parameters were analyzed
to assess the efficiency and accuracy of the VarroDetector software in comparison to human
visual inspection and the actual count (control). Normality distributions and the variance
homogeneity of the median value score for each set were checked using the Kolmogorov—
Smirnov [27] and Levene tests [28], respectively. Table 1 summarizes the statistical analyses
applied to each of the parameters examined.

Table 1. Summary of the statistical analyses applied in relation to each evaluated parameter.

Parameter Analyzed—Efficiency Statistical Analysis Applied
Comparison of the time efficiency between visual inspection and VarroDetector =~ None; data illustrated through
methods for the detection of Varroa mites. graphical representation only.
Parameter Analyzed—Repeatability Statistical Analysis Applied

Correlation between VarroDetector replicates as a function of sheet orientations. Pearson correlation analysis.

Parameter Analyzed—Accuracy Statistical Analysis Applied

Accuracy of the visual and VarroDetector counting methods relative to the

reference data.

Standard deviations, Friedmann
test (non-parametric for
paired samples).

Correlation between the two counting methods and the reference data. Pearson correlation analysis.

Accuracy of the visual and VarroDetector counting methods relative to the

reference data.

Cumulative percentage error.
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3. Results
3.1. Detection Time Efficiency

Figure 6 illustrates the time trends associated with visual and VarroDetector counting.
The time required for visual inspection (blue dots and line) exhibited high variability
(35-845 s) depending on the number of Varroa mites in the sheet. As the mite count
increased, the detection time increased exponentially. In contrast, the processing time per
sheet using the VarroDetector method (orange dots and line, only time for iPhone images
is represented) remained nearly constant, independent of the number of mites present. For
all observations, the processing time with the VarroDetector remained below 50 s. Time
was greater when using the iPhone, since their images are raw files (DNG format). These
images need more space (usually 10x or 20x compared to a JPG) and also require some
processing steps performed by VarroDetector (adjust of white balance, color profiles, etc.),
which are not needed for JPG files. For the Xiaomi and Samsung images, the analysis
time per sheet was reduced to 2440 s, depending on the image resolution and computer
used. This processing time included the processing for border detection and the Varroa
detection in the four images corresponding to each sticky sheet. The time required for
image acquisition and classification was not considered.
600
550
500
450
400 . .
350 e
300 o . .

250 . e
200 Y ~.. oo .. PR

Time (s)

150 Ay ‘.‘ o0

100 1ol
50
0
0 50 100 150 200 250 300 350 400 450 500

Number of Varroa mites

e Visual counting VarroDetector

Figure 6. Comparison of the efficiency of the two methods (visual inspection and VarroDetector) in
the analysis time of each sticky sheet in relation to the number of Varroa mites that they contained.

3.2. Repeatability of the VarroDetector as a Function of Sheet Orientations

Figure 7 shows the Pearson correlation between the replicates as a function of
sheet orientations. A strong correlation among replicates regardless of sheet orienta-
tion was obtained (R? > 0.99), highlighting good repeatability of measurements for the
VarroDetector software.

1200 1200

=0.9973 . 1000
)

2o . 1000
Re=0g9082 Re=09981 "

o 600 2 600 -
K o
400 - 400 o~
» .
200 o 200 /
0 -""""' 0
800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 1200
R1 R2

Figure 7. Linear correlation between VarroDetector replicates as a function of image orientation (R1
long side of the sheet in the same orientation as in the colony seen from behind, R2 90° rotation from
the initial position, and R3 180° rotation from the initial position.
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3.3. Accuracy of Varroa Counting Methods (Visual Inspection and VarroDetector) Compared to the
Real Value

Table 2 presents the accuracy of the two counting methods, visual and VarroDetector,
based on the calculation of their standard deviations relative to the real data. The data were
divided into five categories based on the Varroa count ranges per sheet. The results of the
Friedman test for paired samples showed that, in the ranges between 51 and 200 Varroa
mites per sheet, no significant differences were observed between the VarroDetector with
respect to the real data. However, high significant differences in the standard deviation of
the error in the visual count compared to the real data were obtained in all categories but
also in the results obtained with VarroDetector in the range N < 50 and N > 200.

Table 2. Differences in standard deviation of the errors made with the two counting methods (visual
vs. VarroDetector) compared to the real data. ** Denotes the presence of significant difference
(p < 0.01).

Range of Number of Dev Standard Dev. Standard
Varroa Mite per Sheet Sheets R-Visual R-VarroDetector
0<N<I10 10 1.74 ** 10.51 **
10<N <50 35 413 ** 6.55 **

50 <N <100 19 10.94 ** 9.71
100 <N < 200 28 14.16 ** 13.35
N > 200 20 52.74 ** 35.44 **

Figure 8 shows the correlations between the replicates of the visual observations and
of the VarroDetector from images captured with different Smartphones with respect to the
real data (control). The higher reliability was obtained with the VarroDetector software
combined with the iPhone (R? = 0.991) followed by the Xiaomi (R? = 0.985) and Observer 3
(R? = 0.985). The results obtained from images captured with the Samsung smartphone,
for which VarroDetector had not been previously trained, were slightly lower than those
of the other two smartphones but still acceptable (R? = 0.978). When comparing to the
reference line, all the methods, except the VarroDetector using the Xiaomi smartphone
(that captured the images at higher resolution), underestimated the number of Varroa, with
higher deviations in high-density regions.

1200

1000

8
© ©
8
8

R2=0.9851 e
800

R?=0.9907 600

500 ®  R*=09781

400 "3

VarroDetector_Xiaomi
VarroDetector_Samsum,

Real data Real data

1000 1000

556 A7 Ri=0.9848

500 ® R?=0.9768
R?=0.9511

Visual count_Observer2
Visual count_Observer3

600 800 0 200 400 600 800 o 200 400 600 800
Real Data Real Data

Figure 8. Linear correlation for Varroa mite counting methods compared to the real data (blue circles
and line) and comparison with the 1:1 reference line (orange line).
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Figure 9 presents an example in which both the ground truth Varroa mites and the
detections produced by VarroDetector are shown, including instances of missed detections
and false positives.

Ground Truth

500

1000

1500

2000

2500

1500 2000 2500

0 500

1000

1500

2000 2500

Figure 9. Crop of an image in which ground truth Varroa are highlighted in green on the left, while
on the right, Varroa mites detected by VarroDetector are shown in blue, false negatives in red, and
false positives in yellow.

Table 3 shows the cumulative percentage error of visual counting (average of the
three observers) and VarroDetector-based counting when compared with real data. The
data were divided in the same categories as in Table 1. For the sheets containing between
0 and 50 Varroa mites, the VarroDetector method was less reliable than visual counting.
In subsequent mite count ranges, the percentage error was lower for the VarroDetector
compared to the visual inspection.

Table 3. Cumulative percentage error for visual inspection and with the VarroDetector method
compared to the real data.

Range of Total Number of Total Number of Real
Varron Mite Number Varroa Mites Varroa Mites Number Error % Error %
of Sheets Counted with Counted with Visual = VarroDetector
per Sheet Visual 1 . (Control)
isual Inspection VarroDetector
0<N<I10 10 35 179 72 32.01 148.61
10 <N <50 35 631 1187 957 21.70 24.03
50 <N < 100 19 1067 1498 1465 12.65 2.25
100 < N < 200 28 3095 3969 3962 10.02 0.18
N > 200 20 5597 6849 7479 12.68 8.42

4. Discussion

In this study, a new open-source and automated Al tool for detecting and counting
natural Varroa mite fall was developed. The study validated its performance, efficacy,
and reliability by comparing it with human visual counts and real data. Previous studies
have attempted to use Al models for the analysis of Varroa destructor infestation on adult
honeybees [16-19], and on honeybee pupae [20]. Although promising, some of them
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obtained unsatisfactory results [16,17,19,20], remain at the prototype stage [16,17,19,20],
and/or have not been properly validated in the field [16-20].

In Italy, a commercial digital portable scanner coupled with an Al algorithm (BeeVS)
focusing on the analysis Varroa mites on sticky sheets has been developed [22]. This system
has been recently validated in the field by Scutaru et al. [22]. Although offering reliable
results, it requires special equipment (digital scanner) and subscription, the models are not
publicly available, and the algorithm relies on two-stage neural networks that runs on a
central server.

In a recent work, we introduced a precise and accurate open-source Al algorithm
for locating and counting Varroa mites using images of the sticky sheets taken by smart-
phone cameras [21]. The procedure was based on the use of lower resolution images than
in the present study (12 megapixels) that required higher magnifications to adequately
discriminate the Varroa mites. Consequently, it was necessary to increase the number of
photographs per sheet to eight. Furthermore, the algorithm relies on two-stage neural
networks that demand substantial computational resources. Consequently, the analysis
must be conducted on a centralized server. Both aspects that restrict its practical appli-
cability have been overcome with the new VarroDetector software. The use of higher
resolution smartphone photographs allowed us to reduce the images per sheet to only
four, and the application of one-stage YOLO v11 nano neuronal network made the analysis
in low-end computers possible without GPUs. New features have also been introduced
that facilitated the analysis, such as the automatic selection of the region of interest where
Varroa must be counted, and the analysis of the images from same directory (sheet) together.
Moreover, VarroDetector is the only available tool that allows user interaction during the
analysis process, enabling the adjustment of the most appropriate threshold and facilitating
quick, intuitive corrections after analysis. This feature makes it a robust and adaptable
tool, suitable both for fast and precise automatic determinations and for scenarios where
maximum accuracy is required.

The VarroDetector software is based on a deep learning approach, a type of machine
learning that uses artificial neuronal networks to learn from data [29]. Deep learning studies
usually require hundreds or thousands of images [30,31]. The dataset used for training
contained 285 images, but the total number of Varroa in the images was 11917. Being that
it is a relatively simple object, the number of images can be considered sufficient for the
neural networks to learn to distinguish the Varroa bodies [21].

The algorithm developed is based on the one-stage YOLO neural network architecture.
Specific methodologies for small object detection were also studied, such as the slicing
aided hyper inference (SAHI) [32] with its image tiling approach, but they were ultimately
not implemented, since the performance improvement was minor compared to the very
significant increase in inference time. The use of two-stage detectors, like the faster R-CNN
family [33], and other deeper architectures were also discarded for the same reasons. Thanks
to this choice, the processing time using this neuronal network is very fast, despite the fact
of the high-resolution images involved (48 Mpx and greater); when executed on modern
processors, the analysis requires only milliseconds per image, while processors from old
generations complete the task in a few seconds. All computations are performed locally on
the device, eliminating the need for cloud computing infrastructure or dedicated GPUs.
The use of high-resolution images was not arbitrarily chosen. Preliminary experiments
with lower-resolution cameras proved inadequate, as they produced images too blurry
to reliably distinguish mites from environmental debris, such as dirt and soil particles.
The current market availability of affordable smartphones equipped with high-resolution
cameras makes this requirement readily achievable. For the same reasons, four photographs
per sampling sheet are recommended. Currently, the sticky sheet images belonging to the
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dataset were photographed by smartphones in a controlled environment. Over time, the
advances in smartphone camera technologies will make it possible to just take a single
picture of the sticky sheet in the field.

The results highlighted the high repeatability of results generated by the VarroDetec-
tor software across different image orientations, supporting its reliability. These findings
are consistent with those reported in the aforementioned study employing a commercial
system [22]. Moreover, a high accuracy of the measurements performed with the Var-
roDetector software when compared to the real data (R? = 0.98 to 0.99, depending on the
smartphone camera), even when using the Samsung smartphone for which the software
was not previously trained. The results were more reliable than those obtained with visual
inspection performed by different trained operators. After 50 Varroa mites per sheet, the
cumulative percentage error was much lower for the VarroDetector than for the visual
counting method when compared with real data. Additionally, a statistically significant
difference was found between the Varroa mites determined by visual inspection and the
control, while the VarroDetector results differed to the real data only when < 50 and > 200
Varroa mites per sheet were counted. These findings underscore the limitations of visual
inspection and the inherent variability of the human eye in performing such assessments,
as also reported in previous studies [22,34].

In terms of counting efficiency, the VarroDetector method demonstrated a stable
processing time, unaffected by the number of Varroa mites on the sticky sheets. In contrast,
visual inspection became increasingly time-consuming as mite numbers grew, following an
exponential pattern. Similar results were also obtained when testing the commercial BeeVS
scanner [22]. Moreover, the VarroDetector offers the possibility of analysis of an unlimited
number of images in one step, ensuring that the processing time is not a constraint, as the
operator can attend to other tasks, while the system handles the analysis.

The main limitations of the VarroDetector software are the worse performance than
human inspection at low infestation levels, in agreement with the results obtained by
others using more complex neuronal networks [22] and its dependency on high-quality
images. The software was trained and tested using high-resolution images captured under
controlled lighting conditions. The use of lower resolution images would much likely
reduce the accuracy, limiting usability. The software was neither tested using field captured
images with variable lighting conditions. Moreover, in the rare instances when the green
frame strings are not properly detected, a manual ROI selection is needed, which may
reduce efficiency. Also, as can be seen in Figure 6, VarroDetector may fail to detect some
Varroa mites, especially when they are blurred or surrounded by a lot of similarly colored
dirt. Another limitation of our study is the use of two smartphones for training; if a model is
trained with the same smartphone that is later tested, the results surely will improve. This
is due to the so-called domain shift, a fundamental challenge in machine learning where
the distribution of training data differs from testing data. Although, in this case, techniques
such as data augmentation or regularization have been used to improve generalization
across different smartphones, a switch to a different smartphone camera introduces a small
domain shift. However, our results show that the neural network has managed to learn
and generalize enough to obtain good results, but it would certainly improve even more if
it were trained with the same smartphone used for testing.

VarroDetector is specialized for sticky board images only, excluding other mite detec-
tion methods like the inspection of brood cells or live bees. We decided to focus on this ap-
proach, because previous attempts to analyze Varroa on brood [20], and live bees [16,17,19]
provided unsatisfactory results. However, unlike the study of Sevin et al. on adult bees [18],
the current version of VarroDetector software does not integrate with smart hives or IoT
devices, limiting its automation potential.
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5. Conclusions

In conclusion, VarroDetector is a free and open-source tool for the efficient analysis
of Varroa mite fall that simplifies the monitorization and control of this relevant parasite.
The software is designed for continuous improvement through the integration of new
images from different devices, illuminations, and sticky boards, etc., allowing it to adapt to
user needs. These adaptations, together with the development of a mobile app for direct
analysis or even a cloud service would facilitate in situ data collection. Users interested
in contributing to this feedback process should contact the software developers. Future
research may also be oriented to the automatic detection of emerging diseases, such as
Tropilaelapsosis, and to the ability to collect data (images, annotations, geolocation), which
could be applied by governments for the early identification of pests.
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