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Abstract: A continuing trend in precision apiculture is to use computer vision methods to quantify
characteristics of bee traffic in managed colonies at the hive’s entrance. Since traffic at the hive’s
entrance is a contributing factor to the hive’s productivity and health, we assessed the potential
of three open-source convolutional network models, YOLOv3, YOLOv4-tiny, and YOLOv7-tiny, to
quantify omnidirectional traffic in videos from on-hive video loggers on regular, unmodified one-
and two-super Langstroth hives and compared their accuracies, energy efficacies, and operational
energy footprints. We trained and tested the models with a 70/30 split on a dataset of 23,173 flying
bees manually labeled in 5819 images from 10 randomly selected videos and manually evaluated
the trained models on 3600 images from 120 randomly selected videos from different apiaries, years,
and queen races. We designed a new energy efficacy metric as a ratio of performance units per
energy unit required to make a model operational in a continuous hive monitoring data pipeline. In
terms of accuracy, YOLOv3 was first, YOLOv7-tiny—second, and YOLOv4-tiny—third. All models
underestimated the true amount of traffic due to false negatives. YOLOv3 was the only model with
no false positives, but had the lowest energy efficacy and highest operational energy footprint in a
deployed hive monitoring data pipeline. YOLOv7-tiny had the highest energy efficacy and the lowest
operational energy footprint in the same pipeline. Consequently, YOLOv7-tiny is a model worth
considering for training on larger bee datasets if a primary objective is the discovery of non-invasive
computer vision models of traffic quantification with higher energy efficacies and lower operational
energy footprints.

Keywords: precision apiculture; precision pollination; computer vision; artificial intelligence; deep
learning; energy efficacy; power efficiency; YOLO; Apis mellifera; honey bee; hive monitoring

1. Introduction

Honey bee (Apis mellifera) traffic in the hive’s vicinity is a contributing factor to the
hive’s productivity and health [1], which is why attempts to quantify it with human
observations and mechanical, analog, and digital sensors have continued for almost a
century [2]. One such sensor is a camera, a non-invasive sensor that, when placed on
or outside of the hive, does not disrupt the colony’s natural cycles or require significant
structural modifications of the hive. In 1935, Patterson [3] designed a photo-based bee
counter with a conventional camera with a wide-angle lens and 35 mm film. Single bee
passes were manually counted in individual photos as line crossings. Patterson’s system
required approximately 20 m of film per minute. For the next 60 years, computer vision
methods mostly disappeared from insect motion research until the appearance of affordable
digital cameras in the late 1990s, which allowed researchers to capture not only still images,
but also videos to investigate insect motion (e.g., [4,5]).

The availability of affordable digital cameras prompted multiple precision apiculture
researchers to start working on computer vision methods to investigate various types of
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traffic at the hive’s entrance or in the hive’s vicinity. Kimura et al. [6] proposed a method
to count bees and measure their motion on internal frames of an observation hive. Chen
et al. [7] developed a method to use an infrared camera to recognize the identity and
orientation of individual bees marked with circular paper tags with special characters at
the hive’s entrance. Dussaubat et al. [8] designed an optic bee counter system that used
a digital camera looking down on the entrance of a 4-frame nuc hive. Chiron et al. [9]
proposed a system to detect and track honey bees at the hive’s entrance with 3D stereo
vision methods. Ghadiri [10] proposed a method to count individual bees in videos from
on-hive loggers by using background segmentation in image sequences. Babic et al. [11]
designed a pollen-bearing forager counting system that ran in situ on a Raspberry Pi 2
computer coupled to a Raspberry Pi High-Definition (HD) camera. Tu et al. [12] proposed
a system for counting bees at the hive’s entrance and measuring incoming and outgoing
traffic. Ngo et al. [13] designed and deployed a pollen-bearing forager counting system for
4-frame nuc hives. Tashakkori et al. [14] proposed Beemon, an integrated multi-sensor data
acquisition and hive monitoring platform where videos from on-hive loggers are sent to a
remote server for analysis. Kulyukin et al. [15] designed BeePIV, an algorithm that uses
particle image velocimetry methods [16] to estimate the amount of incoming, outgoing,
and lateral traffic in videos from on-hive loggers.

A recent trend in computer vision (CV) is the employment of methods of artificial
intelligence (AI), a branch of computer science (CS) whose objective is to design algorithms
that model natural intelligence. Deep learning (DL) is a branch of AI that focuses on the
design and application of convolutional neural networks (ConvNets) to problems that
include, but are not limited to, image generation and classification, speech and audio
processing, and music synthesis and analysis [17]. ConvNets have also been used to detect
Varroa mites on bees [18] and to classify different bumble bee species with smartphones [19].

While there is a growing appreciation that DL and other machine learning (ML) mod-
els are data- and energy-hungry [20], we are not aware of longitudinal precision apiculture
studies that discuss in depth, let alone quantify, tradeoffs between the performance accura-
cies and energy footprints of such models. Yet, such investigations are urgently needed
because of rising energy costs. For example, since fall 2022, the city of Logan, Utah, USA,
home of Utah State University and one of the research sites for this investigation, has
levied an electrical surcharge on monthly utility bills “to recover costs Logan City incurred
as it purchased electricity on the open market where prices were higher than expected
for reasons that were not foreseeable.” [21]. Such investigations are also fundamental
because of the rising ecological and environmental costs of cloud computing required to
support the continuous operation of many DL and ML models. Some of the prominent
environmental and ecological costs are growing water consumption rates for cooling server
farms [22], rising ocean water temperatures due to submerged data centers [23], rising
ambient temperatures due to the heat generated by server farms [24], and increasing levels
of electromagnetic radiation potentially harmful to honey bees and other animals [25,26].

To this end, we assessed the potential of three open-source ConvNet models, YOLOv-
3 [27,28], YOLOv4-tiny [29], and YOLOv7-tiny [30], to quantify omnidirectional bee traffic
in videos not only in terms of their accuracy, i.e., their estimated capacity to infer flying
Apis mellifera objects in video frames, but also in terms of their energy efficacy and operational
energy footprint. By the former, we mean a measurement of the number of performance
units per every unit of energy required to make a model operational in a data pipeline; by
the latter—the energy footprint of a functioning data pipeline over a period of time after
a model is integrated into it. We made our assessments with BeePiP (pronounced as bee
pipe), a multi-sensor continuous hive monitoring data pipeline (CHMDP) that we have
been investigating since 2017 (e.g., [31,32]).

The contributions of our investigation can be summarized as follows.

1. Image Dataset : We curated an image dataset of 23,173 flying bees manually labeled
in 5819 video frames from 10 randomly selected low-end, low-energy on-hive camera
videos (744 frames per video) from colonies housed in regular, unmodified one-



Sensors 2023, 23, 6791 3 of 25

and two-super Langstroth hives with different queen races at different apiaries at
different years.

2. YOLO Models: We trained and tested YOLOv3, YOLOv4-tiny, and YOLOv7-tiny with
a 70/30 split on the curated dataset to infer flying bee objects in low-end, low-energy
on-hive camera videos.

3. Accuracy Analysis: We manually evaluated the trained models on 3600 images from
120 randomly selected low-end, low-energy on-hive camera videos from apiaries
different from the apiaries of the image dataset with different queen races at different
years and performed a standard accuracy analysis of the models based on our evalua-
tions in terms of true and false positives and true and false negatives. Our evaluation
of bee object inference accuracy was based on seven evaluation categories that we
specifically designed for this investigation.

4. Energy Efficacy Analysis: We designed a new energy efficacy metric to estimate the
number of performance units per every unit of energy to make a model operational in
a data pipeline and computed the energy efficacy coefficients for each performance
accuracy metric and each evaluated model.

5. Operational Footprint Analysis: We performed an analysis of the energy footprint of
BeePiP deployed at an apiary in Logan, Utah, USA with each trained model integrated
into it over different time periods.

6. Open Science: We made our bee image dataset and the three best-trained YOLO mod-
els publicly available for replicability and iterative improvement in the supplementary
materials.

2. Materials and Methods
2.1. Continuous Hive Monitoring Data Pipeline

All videos for our study were captured within the framework of BeePiP. When installed
at an apiary, a BeePiP consists of BeePi on-hive loggers, one logger per hive (see Figures 1–3),
and a local GPU computer where the wirelessly transferred data from the loggers are
processed. The GPU computer used in this investigation is shown in the right image of
Figure 2. While in this article, we focus on bee object inference in videos, BeePi loggers
collect other data relevant to hive monitoring such as hive weight, internal hive temperature,
weather, and ambient electromagnetic radiation. Since 2017 we have deployed BeePiP at
five public and private apiaries in Utah, Arizona, and California (see Table 1). We varied
the number of loggers from 2 to 10 and the GPU computer with no monitor or keyboard
was placed in a nearby building, i.e., a barn, a garage, or a storage shed, sufficiently close
to the on-hive loggers for wireless data transfer over an ad hoc 802.11 local network.

Table 1. Longitude and latitude of U.S. locations where bee traffic videos were recorded at private
and public apiaries and queen races at each location.

City State Latitude Longitude Queen Race

Logan Utah 41◦44′7.76′′ N −111◦50′3.80′′ W Carniolan
North Logan Utah 41◦46′16.79′′ N −111◦48′34.19′′ W Italian
Tucson Arizona 32◦13′18.26′′ N −110◦55′35.33′′ W Russian
Grass Valley California 39◦13′8.62′′ N −121◦03′39.82′′ W Italian

The loggers are powered around the clock through waterproof extension cords plugged
into electrical outlets on walls of nearby buildings or on solar stations. Video logging is
parameterized by the duration of each video (e.g, 10 s), the video capture frequency (e.g,
every 5 min), and the daily video capture period (e.g, 7:30 to 20:30). These parameters
are adjustable through configuration files to fit specific project requirements, e.g., local
climates, power supply limitations, manual hive inspection schedules, etc. The loggers are
completely non-invasive in that they require no structural modifications of the hives, e.g.,
special tube tunnels for bee entrance or exit, transparent plastic boards on top of landing
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pads to make foragers and drones crawl in and out of the hive, or any sensors or special
markings on individual bees.

Figure 1. Left: An on-hive BeePi logger on top of a 2-super Langstroth hive in Logan, Utah; bottom
to top: (1) a landing pad; (2) a light gray super; (3) a blue super; (4) a white super with the BeePi
logger hardware (see the left image in Figure 2); (5) a waterproof plastic box with a Pi camera inside
(see Figure 3) looking down on the landing pad; the box is attached to the front of the third super
with two screwed metallic brackets; (6) a wooden migratory hive lid on top of the third white super.
Right: two BeePi loggers on top of two super Langstroth hives in Tucson, Arizona; the top boxes on
hives contain the logger hardware; water- and dustproof boxes on top of the second supers protect
the cameras against rain and dust storms frequent in that area of Arizona.

Figure 2. Left: BeePi logger hardware; bottom to top: a Raspberry Pi computer coupled to an
8-megapixel Pi camera (see left image in Figure 3); a five terabyte USB disk for archiving data for
redundancy in case of GPU computer failures or power supply disruptions; a Pi power charger
plugged into a waterproof power cord; videos are wirelessly transferred to a GPU computer over an
ad hoc 802.11 local network, where they are processed and archived for redundancy in case of logger
storage failures. Right: GEFORCE GTX-980 GPU computer (Arc: x86_64; CPU Family: 6; Model:
60; Model Name: Intel(R) Core(TM) i7-4790K; CPU at 4.00 GHz; BogoMips: 7999.890) with Ubuntu
18.04; all YOLO models were trained on this computer and evaluated for their energy efficacy and
operational energy footprint.

Videos wirelessly transferred by loggers to the GPU computer are processed with
the OmniBeeM [31] and BeePIV [15] algorithms. Since the experiments reported in this
investigation were done within the OmniBeeM framework, we will briefly describe it here.
OmniBeeM stands for Omnidirectional Bee Motion. The algorithm consists of three logical
components: object inference, motion detection, and object-motion alignment. The first two
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components operate in parallel or in sequence. When bee object inference must be informed
by motion, motion detection is done prior to bee object inference with the latter applied only
to detected motion regions, and, vice versa, motion detection can be confined to the regions
with inferred bee objects. Object-motion alignment is a method of determining which
motion regions and inferred bee objects constitute a flying bee. The output of OmniBeeM for
each video is a non-negative integer representing the number of flying bee objects inferred
in the video’s frames. OmniBeeM is agnostic to the specifics of object inference, motion
detection, and object-motion alignment methods, and is designed as a software testbed for
different combinations that are executed concurrently or sequentially.

Figure 3. Left: A low-end, low-energy 8-megapixel Raspberry Pi camera v2.1 inside a waterproof
camera protection box attached to the front of the super with the on-hive BeePi logger shown in the
right picture. Right: An on-hive BeePi logger on top of a one super hive in Logan, Utah in May 2023;
bottom to top: (1) a bottom board with a landing pad; (2) a light gray super; (3) a white super with
the logger hardware shown in the left image of Figure 2, and a white waterproof camera protection
box with the Pi camera in the left image; (4) a white telescoping hive lid.

2.2. Datasets

All videos for this investigation were captured by loggers equipped with low-end,
low-energy 8-megapixel Pi v2.1 cameras connected to Raspberry Pi computers (Pi 3 Model
B+ or Pi 4) running the Raspbian Operating System (OS), a flavor of open-source Debian
OS. Each logger’s computer had a miniature heat sink on its CPU and was connected to
exactly one Pi camera and to a digital clock (ChronoDot 2.1 Real-Time Clock, Macetech,
Inc.) for video timestamping. At each apiary, the loggers captured 30-second (30-s) MPEG-4
(MP4) videos with a resolution of 1080 × 1980 pixels and a rate of 24 frames per second
(fps) every 15 min daily from 7:30 to 20:45 in the local time zone. When the logger is
installed on the first super, the camera’s height (CH), i.e., the distance from the landing
pad to the camera’s lens is 30 cm, and the volume of the space, i.e., height by width by
length, in front of the hive in recorded videos is approximately 30 cm × 50 cm × 70 cm.
When installed on the second super, the camera’s height is 60 cm, and the volume is
approximately 60 cm × 65 cm × 85 cm. We refer to videos recorded with loggers on the
first super as CH=1 and to videos from loggers on the second super as CH=2.

A random sample of 60 CH=1 videos was drawn from a set of 500 CH=1 videos
from apiaries in Logan, Utah (May to September 2020) and Grass Valley, California (June
2022). Another random sample of 60 CH=2 videos was drawn from a different set of
500 CH=2 videos from different apiaries in Logan, Utah (May to September 2019) and
Tucson, Arizona (June to September 2021). We used 30 middle images from each of
these 120 videos (3600 images in total) as the evaluation dataset for the bee object inference
experiments with the three trained models. We took a sample of 100 videos (50 CH=1,
50 CH=2) from an apiary in North Logan, Utah (May to September 2018) and an apiary
in Tucson, Arizona (July to October 2022). These apiaries were different from the apiaries
of the evaluation dataset. We took a random sample of 10 videos (5 CH=1, 5 CH=2) from
the sample of 100 videos and used these 10 videos to create a training dataset of flying bee
images for the models. The 10 videos had 7440 frames (744 frames per video) where we
manually labeled 23,173 flying bee objects in 5819 frames with the CV Annotation Tool
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(CVAT) (www.cvat.ai, accessed on 27 July 2023) (see Figure 4). The bee image dataset
curation was done on a Hewlett Packard computer (model Z240, x86_64, i7-6700 CPU
at 3.40 GHz, 8 CPUs) running Ubuntu 18.04. In each frame, we labeled only full-size,
unoccluded flying bee objects. It should be noted that the YOLO data labeling standards
do not require that all objects of a specific class be labeled in each image so long as enough
objects of each class (e.g., ≥4000 per category [33]) are labeled in all images.

Figure 4. Manually labeled flying bees in a frame from a video captured by a BeePi logger on top of
a 2-super hive at an apiary in Tucson, Arizona in September 2022. Each bee object is marked with
a rectangle with corners accentuated by small filled light-green circles. When we were not sure if
an object is a bee shadow or a bee, we left it unlabeled. Nor did we label any partial bee objects
(1/2 bee, 1/3 bee, etc.) or any bee object that we could not recognize, e.g., due to the fogging of a
camera lens or video flicker caused by wind. Since our objective was to develop YOLO models to
quantify omnidirectional traffic, we avoided, to the best of our visual ability and judgment, labeling
stationary bees. In particular, in the above image, all stationary bees on the landing pad are left
unlabeled because they do not contribute to traffic.

2.3. Bee Object Inference

We trained each model on the training dataset (See Section 2.2) with a random 70/30
train/test split and followed all training recommendations in the documentation from the
Darknet public code repository [33]. The main model configuration training parameters
are given in Table 2. We set the stopping criterion to the absolute difference between the
average losses of two consecutive training runs not exceeding 0.01, where each training run
consisted of the number of iterations in the last column of Table 2. We left unchanged the
default image augmentation techniques used by the Darknet trainer and did not make any
changes in the default activation functions or individual layers of the models. The number
of object classes was set to 1 with the label BEE. The synapse weights of each model were
persisted every 1000 iterations of a run for robustness to power outages. When the trainer
finished a run, the average loss was compared to the average loss of the previous run and,
if the absolute difference between the two losses did not exceed 0.01, the persisted model’s
synapse weights of the run with the smallest loss (of the two losses) were saved for the
subsequent bee object inference evaluation on the evaluation dataset. If the absolute value
of the average loss difference exceeded 0.01, the smallest average loss became the previous
loss and the persistent model with the smallest average loss was trained for another run.
The average loss ties were broken arbitrarily.

www.cvat.ai
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Table 2. Main training parameters of the models; the complete configuration files are in the yolov3-
bees.cfg, yolov4-tiny-bees.cfg, and yolov7-tiny-bees.cfg files in the supplementary materials.

Model Batch Width, Height Learning Rate Decay Num Iterations

YOLOv3 16 416, 416 0.00100 0.0005 500,200
YOLOv4-tiny 64 608, 608 0.00261 0.0005 48,000
YOLOv7-tiny 64 416, 416 0.00261 0.0005 144,400

The models were trained on the GTX-980 GPU computer (see Figure 2). To minimize
power consumption during training, the wireless and wired Internet connections were
disabled to prevent background updates, all USB devices were disconnected, and the com-
puter’s monitor was turned off and the keyboard detached, except when we re-launched
the trainer from the Ubuntu command line.

2.4. Object-Motion Alignment

Since the comparison of different motion detection methods was beyond the scope
of our investigation, we used our default motion detection algorithm implemented with
OpenCV 2.1 in Python 3.6.7 on Ubuntu 18.04. The method works on two consecutive RGB
frames Fi and Fi+1 of a video, and is inspired by the CV methods and techniques in [34].
Both frames are grayscaled and the Gaussian blur with a 5× 5 kernel is applied to them. The
pixelwise absolute difference, i.e., Fd = |F1 − F2|, is computed between the blurred frames.
Fd is dilated with a 5 × 5 kernel to make the differences more pronounced for subsequent
contour detection. The binary thresholding with a threshold of 20 is applied to Fd and the
contours are found with chain approximation, i.e., the procedure cv2.findContours() with
the keyword parameter method set to cv2.CHAIN_APPROX_SIMPLE. Contours whose
area is less than 1000 pixels are discarded, because they are too small to contain one flying
bee object. Each thresholded contour is enclosed with the smallest rectangle (x, y, w, h),
where (x, y) are the column and row of the top left corner of the rectangle and w and h are
the rectangle’s width and height. Each enclosing rectangle is considered a motion region
whose center, i.e., (x + w/2,y + h/2), is stored in a kd-tree [35] implemented with the class
KDTree in the scipy.spatial Python package for alignment with bee objects inferred by a
trained YOLO model in the same frame.

A bee object inferred by a YOLO model is a rectangle (x1, y1, x2, y2), where (x1, y1)
and (x2, y2) are the respective column and row coordinates of the rectangle’s top left and
bottom right corners. The score threshold parameter for each YOLO model was set at
0.7. To align inferred bee objects, i.e., YOLO boxes with scores of at least 0.7, with motion
regions, the values of cx = x1 + (x2 − x1)/2 and cy = y2 + (y2 − y1)/2 were computed for
the center of each inferred bee object box, and the kd-tree T was queried for the motion
region centers within the Euclidean distance of ≤50 pixels to the center of each inferred
bee object box. The bee object was considered motion-aligned if at least one motion region’s
center was found in the kd-tree within the distance threshold, otherwise the bee object was
considered motion-unaligned. The distance ties were broken arbitrarily.

For every frame, the foregoing object-motion alignment algorithm returned three sets
of objects: the set of motion regions, the set of motion-aligned inferred bee objects, and the
set of motion-unaligned inferred bee objects. The bee object inference, motion detection,
and object-motion alignment algorithms were executed sequentially on each video frame,
i.e., object inference, then motion detection, and then object-motion alignment.

2.5. Bee Object Inference Accuracy

The middle 30 frames, i.e., frames 358 to 387, from each video in the evaluation set of
120 videos (See Section 2.2) were processed with OmniBeeM where bee object inference
was done with YOLOv3, YOLOv4-tiny, and YOLOv7-tiny and object-motion alignment
was as described in Section 2.4. To make manual accuracy evaluation easier, we wrote
procedures to enclose every motion-aligned inferred bee object in an orange rectangle
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and every motion-unaligned inferred bee object in a red rectangle, where the rectangle
coordinates were the coordinates of inferred bee object boxes returned by the trained YOLO
models. The motion regions were marked with yellow polygon motion curves enclosed
in blue rectangles. Figures 5–7 and the concomitant explanations in the text elucidate our
color marking scheme. All 30 marked frames from each evaluation video were saved on
the GPU computer’s hard drive. We then manually evaluated the bee object inference
accuracy in each of the 3600 marked frames, i.e., 1800 CH=1 frames and 1800 CH=2 frames.

Figure 5. Top : Category BTP_BFLMTP (Bee True Positive and Bee Flight Motion True Positive).
Bottom: Categories BTP_BCRMTP (Bee True Positive and Bee Crawling Motion True Positive) and
BTP_BMTN (Bee True Positive and Bee Motion True Negative).

Our evaluation of bee object inference accuracy involved seven categories designed
for this study. The first category, BTP_BFLMTP, abbreviates the phrase bee true positive and
bee flight motion true positive and describes the situation when the object inference model
accurately infers a bee object and there is a motion region that satisfies two criteria: (C1 ) it
is sufficiently close to the inferred bee object (this criterion is controlled by the threshold
of ≤50 pixels in the kd-tree queries) and (C2) it has a visually detectable intersection with
the inferred bee object. The former criterion is detected programmatically, while the latter
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is detected during the manual evaluation by a human evaluator. The upper image in
Figure 5 illustrates this category: an orange rectangle in the upper right corner of the image
is a motion-aligned inferred bee object. It is motion-aligned because, inside the orange
rectangle, there is a blue rectangle enclosing a motion region marked by a yellow polygon
curve connecting individual pixels of a flying bee object. The category describes an ideal
case where an inferred object contains a motion region (or vice versa) or when there is a
significant, visually detectable overlap between the two regions.

Figure 6. Top : categories BTP_BMFN (Bee True Positive and Bee Motion False Negative). Bottom:
categories BFN_BFLMTP (Bee False Negative and Bee Flight Motion True Positive) and BTP_BCRMTP
(Bee True Positive and Bee Crawling Motion True Positive).

The second category, BTP_BCRMTP, abbreviates the phrase bee true positive and bee
crawling motion true positive and describes the situation when the object inference model
accurately infers a bee object and there is a motion region that satisfies C1 and C2, but the
bee object is not in flight but crawling. We checked the latter condition by looking at the
bee object in the previous frame to determine if there was, indeed, a crawling motion. If
the inferred bee barely moved or moved its wings or slightly changed its orientation, then
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we put the motion-aligned inferred bee object in this category. The lower image in Figure 5
illustrates this situation: an orange rectangle in the lower right part of the image, on the
horizontal intersection line between the white landing pad and the yellow hive super on
top of the pad, is an inferred bee object. This region overlaps with a blue motion region, but
this bee object barely moved when its position in this frame was compared to its position
in the previous frame.

Figure 7. Top : category BFN_BFLMFN (Bee False Negative and Bee Flight Motion False Negative).
Bottom: category BFP (Bee False Positive).

The third category, BTP_BMTN, abbreviates the phrase bee true positive and bee motion
true negative and describes the situation when the object inference model accurately infers a
bee object, but the inferred bee object is stationary, i.e., in the human evaluator’s judgment,
its position in the current frame is the same as in the previous one, and no motion region is
detected that satisfies C1 and C2. Hence, the second half of the phrase — bee motion true
negative. This category is illustrated with a red rectangle drawn around a stationary bee
slightly right of the center of the white landing pad in the lower image of Figure 5. Since
this inferred bee object made no motion from its position in the previous frame, we counted
this bee object as an instance of BTP_BMTN.
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The fourth category, BTP_BMFN, abbreviates the phrase bee true positive and bee motion
false negative and describes the situation when the object inference model accurately infers a
bee object, but no motion region is found satisfying C1 and C2. The upper image in Figure 6
illustrates an instance of BTP_BMFN with a red rectangle enclosing a correctly inferred
flying bee object on the right side of the image above the white landing pad. However,
there is no motion region detected nearby that satisfies C1 and C2.

The fifth category, BFN_BFLMTP, abbreviates the phrase bee false negative and bee
flight motion true positive and describes the situation when the motion detection algorithm
accurately identifies a bee object in flight but the object inference model fails to infer a bee
object in such a way that C1 and C2 are satisfied. The lower image of Figure 6 gives an
example of this category with two accurately detected blue-yellow motion regions above
and to the right of a correctly inferred motionless bee inside a red rectangle right on the
edge of the white landing pad. The motion regions are correctly detected around the thorax
and body of a flying bee object, yet the object inference model (YOLOv4-tiny in this case)
failed to infer a bee object in the vicinity of either motion region. Incidentally, the lower
image of Figure 6 contains an instance of the previously discussed category BTP_BCRMTP
with an orange rectangle visibly overlapping a blue-yellow motion region slightly right of
the middle of the white landing pad.

The sixth category, BFN_BFLMFN, abbreviates the phrase bee false negative and bee
flight motion false negative and describes the situation when a human evaluator identifies a
bee object in flight, but neither the object inference model nor the motion detector recognize
anything in the region of the image with the bee object. The upper image of Figure 7
illustrates this category: a flying bee in the bottom right corner of the image above the
landing pad is not detected by the object inference model or the motion detector.

The seventh category, BFP, abbreviates the phrase bee false positive and describes the
situation when the object inference model infers a bee object where there is no bee object
regardless of nearby motion regions or lack thereof. The lower image of Figure 7 illustrates
this category with a red rectangle on the right side of the white landing pad signaling a
false inference of a bee object.

For each model, we counted the instances of the first four categories as true posi-
tives (TP), i.e., instances where the model accurately inferred the presence of a bee object
irrespective of motion. The instances of the fifth and sixth categories were counted as
false negatives (FN), i.e., the model’s failures to infer true bee objects. The last category
gave us the counts of false positives (FP) where the model inferred the presence of a bee
object where there was none. We used four standard metrics, i.e., Precision, Recall, F1, and
Intersection Over Union (IOU) in (1), to compare the performance of the models.

Precision = TP
TP+FN

Recall = TP
TP+FP

F1 = 2 Rrecision×Recall
Precision+Recall

IOU = TP
TP+FP+FN

(1)

2.6. Energy Efficacy and Operational Energy Footprint

We recorded the total physical time in hours to curate the training dataset and the
total power amount to complete the curation. The power amount was recorded with a
Gardner Bender(TM) PM3000 Power Meter (see the left image in Figure 8). The meter was
reset before each video labeling session and the total cumulative power amount (CPA) in
kilowatt-hours (kW-h) on the meter’s display was logged at the end of the session.

The physical run time in hours was programmatically logged for each training run
of each model, excluding power outage periods. The training energy consumption data
were taken from another PM3000 meter plugged into an electrical wall outlet and the GPU



Sensors 2023, 23, 6791 12 of 25

computer was plugged into the meter, as shown in the right image of Figure 8. We reset
the meter prior to each new training run. When the training was finished, the total CPA in
kW-h on the meter’s display was added to the CPA of the previous runs. The power use
rate of training each model was estimated as the CPA divided by the total number of hours
to train the model until the stopping criterion was satisfied.

Figure 8. Left: A Gardner Bender(TM) PM3000 power meter plugged into a wall outlet. Right: A
GEFORCE GTX-980 GPU computer plugged into a PM3000 power meter.

For each model, we recorded the total power amount spent on making the model
operational, i.e., data curation, model training, and manual evaluation. We refer to this
energy amount as the model’s data engineering energy footprint. We measured the energy
efficacy (EFF) of each model by the formula in (2) that we designed for this investigation,
where the parameter M is the value of a specific performance metric of the model (e.g., F1),
A is the total data engineering energy footprint of the model, and λ is a scaling factor which
we set to 102. This formula is designed to estimate the number of performance metric units
per every unit of the model’s data engineering energy footprint.

EFF(M, A) = λ M
A (2)

The energy lifespan of a DL or ML model is not limited to the energy footprint incurred
during the data engineering phase. Once trained and evaluated, the model is integrated
into a data pipeline and contributes to the energy footprint of the pipeline, which we refer to
as the operational energy footprint (OEF). To this end, we calculated the monthly and seasonal
energy footprints of BeePiP with each trained and evaluated YOLO model in Logan, Utah.
BeePiP consisted of 10 video loggers and one GEFORCE GXT-980 GPU computer.

3. Results

It took us 220.33 h to label 23,173 flying bee objects in 5819 frames of the 7440 frames
of the 10 training videos. The total energy footprint of labeling bees in the videos was
11.6 kW-h. The mean average bee labeling rate was 105.17 bees per hour. The training
times and energy footprints of the models are given in Table 3. It took us an additional
180.41 h to evaluate the trained models on the 120 CH=1 and CH=2 evaluation videos with
the seven categories described in Section 2.5. We did this evaluation on the same computer
where we did the image labeling and incurred an additional energy footprint of 9.56 kW-h.
Table 4 details the obtained evaluation results.
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Table 3. Training times and energy footprints of models; average loss as reported by Darknet trainer;
CPA as reported by Gardner Bender(TM) Power Meter PM3000.

Model Total Training Time (h) Average Loss CPA (kW-h)

YOLOv3 720 0.0881 155.89
YOLOv4-tiny 552 0.1088 119.51
YOLOv7-tiny 192 0.7110 24.990

TOTAL 1464 300.39

Table 4. Performance accuracy statistics of trained models; Y3—YOLOv3, Y4T—YOLOv4-tiny, Y7T—
YOLOv7-tiny; CH—camera height, TP—true positives, FN—false negatives, FP—false positives,
NF—number of frames; NV—number of videos; Precision, Recall, F1, IOU were computed with the
formulas in (1).; the values in the TOTAL rows and Precision, Recall, F1, and IOU columns are the
means of the CH=1 and CH=2 values in the same columns and the above two rows; the maximal
values are bolded.

Model TP FN FP NF NV Precision Recall F1 IOU

Y3, CH=1 377 581 0 1800 60 0.39 1.00 0.56 0.39
Y3, CH=2 833 2577 0 1800 60 0.24 1.00 0.39 0.24

Y3 Total 1210 3158 0 1800 60 0.28 1.00 0.43 0.28

Y4T, CH=1 22 748 0 1800 60 0.03 1.00 0.06 0.03
Y4T, CH=2 228 3088 24 1800 60 0.07 0.90 0.13 0.07

Y4T Total 250 3836 24 1800 60 0.06 0.91 0.11 0.06

Y7T, CH=1 271 695 300 1800 60 0.28 0.47 0.35 0.21
Y7T, CH=2 193 3082 498 1800 60 0.06 0.28 0.10 0.05

Y7T Total 464 3777 798 1800 60 0.11 0.37 0.17 0.09

Excluding the time spent on algorithm design, software engineering, and hardware
assembly and testing, the total amount of physical time it took us to train and evaluate
the models was 1864.64 h: 220.23 h of manual image labeling, 1464 h of model training,
and 180.41 h of manual evaluation of the model’s performance on the evaluation videos.
The total CPA for making the models operational was 351.55 kW-h: 11.60 kW-h for image
labeling, 300.39 kW-h for model training, and 9.56 kW-h for model evaluation. Table 5
summarizes the data engineering energy footprints of each model. The models’ efficacy
measures are detailed in Table 6.

Table 5. Cumulative power amounts (CPA) in kW-h of the four data engineering categories; The
curation CPA is the same for all models, because it would have taken the same amount of energy to
label the images regardless of the number of models; The training CPA is in Table 3; Evaluation I CPA
is the amount of power spent on running the models on the 120 evaluation videos and is computed
per video processing rates in Table 7; Evaluation II CPA is computed as 9.56/3 kW-h, i.e., the total
amount of time it took us to manually evaluate the accuracy of the models on 120 evaluation videos
divided by 3.

Model Curation Training Evaluation I Evaluation II TOTAL

YOLOv3 11.6 155.89 0.063 3.19 170.74
YOLOv4-tiny 11.6 119.51 0.033 3.19 134.33
YOLOv7-tiny 11.6 24.990 0.018 3.19 39.800
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Table 6. Energy Efficacy (EFF) of the models computed by the formula in (2) from the values in
Tables 4 and 5 for each performance metric in (1). For example, the Precision EFF of YOLOv3 is
(0.28/170.74)× 102 ≈ 0.16; the Recall EFF of YOLOv4-tiny is (0.91/134.33)× 102 ≈ 0.68; the F1 EFF
of YOLOv7-tiny is (0.17/39.8)× 102 ≈ 0.43; the maximal values are bolded.

Model Precision EFF Recall EFF F1 EFF IOU EFF

YOLOV3 0.16 0.56 0.25 0.16
YOLOv4-tiny 0.04 0.68 0.08 0.04
YOLOv7-tiny 0.28 0.93 0.43 0.23

Table 7 gives the video processing time and power use rates and monthly power
amounts of the trained models on the GPU computer (see Figures 2 and 8). Table 8
presents monthly and seasonal energy footprints estimates (assuming that each month
has 24× 7× 4 = 672 h) of BeePiP 10 on-hive video loggers and one GEFORCE GTX-980
computer in Logan, UT, USA.

Table 7. Video processing times per 30-sec MP4 video and power use estimates of the trained models
on a GEFORCE GTX-980 GPU computer; monthly energy footprints are based on measurements
obtained with Gardner Bender(TM) PM3000 power meters; the monthly footprints of each model are
computed as 24× 7× 4× p, where p is the model’s power rate value in the third column.

Model Time Per Video (s) Power Rate (kW-h/h) Monthly Footprint
(kW-h)

YOLOv3 9 0.210 141.12
YOLOv4-tiny 5 0.200 134.40
YOLOv7-tiny 3 0.180 120.96

Table 8. Estimates of monthly and seasonal operational energy footprints (OEF) of BeePiP in Logan,
Utah that consisted of one GEFORCE GTX-980 GPU computer running YOLO3, YOLOv4-tiny, and
YOLOv7-tiny (one model per time period) and 10 BeePi loggers recording 30-second MP4 videos
every minute 10 h per day and wirelessly transferring each video to the GPU computer; in Northern
Utah, the beekeeping season lasts five months (May to September); one BeePi logger’s power rate
is 0.003 kW-h/h for an estimated monthly total of 24 × 7 × 4 × 0.0003 ≈ 2.02 kW-h. Thus, the
estimated monthly OEF of BeePiP with YOLOv3 is 141.12 + 2.02× 10 = 161.32 and its seasonal OEF
is 5× 161.32 = 813.60.

BeePiP Monthly OEF (kW-h) Seasonal OEF (kW-h)

BeePiP with YOLOv3 161.32 807.60
BeePiP with YOLOv4-tiny 154.60 773.00
BeePiP with YOLOv7-tiny 141.16 705.80

4. Discussion
4.1. Accuracy

Since it is not feasible to train DL or ML bee object inference models for each specific
apiary, we deliberately chose the training and evaluation videos not only from different
apiaries, but also from different years and different bee races in order to a) make our evalu-
ation imitate real-world situations and b) test the generalization capacity of each model.
Table 3 shows that YOLOv3 took much longer to train (720 h) than YOLOv4-tiny (552 h) or
YOLOv7-tiny (192 h) and had a significantly higher training energy footprint (155.89 kW-h)
than YOLOv4-tiny (119.51 kW-h) or YOLOv7-tiny (24.99 kW-h). The performance accuracy
statistics in Table 4 indicate that YOLOv3 was better at generalization than the other two
models in that its Precision, Recall, F1, and IOU were higher.

YOLOv3 can be used to quantify omnidirectional traffic in videos from on-hive loggers,
because it had no false positives in the CH=1 or CH=2 videos of the evaluation set. However,



Sensors 2023, 23, 6791 15 of 25

it can be used to estimate only lower bounds due to false negatives (581 on CH=1 videos
and 2577 on CH=2 videos) and, consequently, can be expected to underestimate the true
amount of omnidirectional traffic. Like YOLOv3, YOLOv4-tiny had no false positives on
the CH=1 videos. However, it had more false negatives than YOLOv3 on the CH=1 videos
(748 vs. 581) and more false positives on the CH=2 videos (24 vs. 0). The Precision, F1,
and IOU of YOLOv7-tiny were lower than YOLOv3. However, YOLOv7-tiny had higher
Precision, F1, and IOU on the CH=1 videos than YOLOv4-tiny and achieved comparable
values in these performance metrics with YOLOv4-tiny on the CH=2 videos. The Recall
of YOLOv7-tiny was lower than the Recall of YOLOv4-tiny on the CH=1 videos (0.47
vs. 1.00) and the CH=2 videos (0.28 vs. 0.90) due to higher counts of false positives: 300
vs. 0 in CH=1 and 498 vs. 24 in CH=2. While YOLOv4-tiny and YOLOv7-tiny also had
false positives, their counts were considerably smaller than the counts of false negatives.
Thus, like YOLOv3, YOLOv4-tiny and YOLOv7-tiny are also expected to underestimate
the true amount of omnidirectional traffic due to the large numbers of false negatives in the
evaluation videos.

In viewing multiple bee traffic videos, we noticed four recurrent flight patterns which
we called (1) straight, (2) inward/outward zigzag, (3) land-and-crawl, and (4) parallel. The
straight pattern is characterized by bees, mostly foragers, flying in and out of a hive along
more or less straight trajectories. The bees that use this trajectory fly at higher speeds. Our
hypothesis is that these are experienced foragers that are confident about their trajectories,
because they know their routes. We also noticed a few drones using this type of trajectory.
The second pattern is characterized by foragers that fly toward the hive, then fly away from
the hive, then fly forward or parallel to the hive, and then fly in or away. We called this
flight pattern inward zigzag, because the bee initially flies toward the hive. In case, the bee
flies away at the end of the the pattern, it may be a scout bee from a different colony. The
outward zigzag pattern is seen in foragers flying out of the hive. In this pattern, a forager
flies out, turns around in the air, flies toward the hive, and then turns around and flies away.
Our conjecture is that this pattern characterizes bees from the hive that may not be familiar
with their routes and must orient themselves before flying in. The land-and-crawl pattern
characterizes a bee that follows a straight or inward zigzag trajectory and then lands on the
landing pad or near the landing pad and then crawls into the hive or stays in place without
any visible motion. We have no hypothesis of the bees that exhibit this pattern. The parallel
pattern shows in bees that fly more or less parallel to the landing pad for the duration
of the video. Our hypothesis is that it is either this pattern characterizes orienting bees
from the monitored hives or bees from other colonies. The OmniBeeM method does not
track trajectories. Trajectory tracking may be feasible in low-traffic videos when a couple of
bees are flying in a video. In medium- or higher-traffic videos, it may not be feasible due
to criss-crossing and overlapping trajectories unless individual bees are tagged (e.g., [7]),
which, by definition, makes the method invasive.

The OmniBeeM method counts all flying bee objects in a frame and uses this as a
numerical measurement of traffic. The same bee, so long as it remains in flight, can be
counted in different frames of the same video, which may overestimate the overall count
of flying bees. It is unclear to us, however, whether this overestimation, if present and
consistent, interferes with the assessment of long-term traffic trends. Our results show that
the three models misclassify as flying some crawling and stationary bees. This limitation
can be addressed by (1) enlarging our image dataset with more flying bee objects and
(2) excluding all inferred bee objects detected on the landing pad.

If the research hypothesis by Marceau et al. [1] is correct, i.e., bee traffic at the hive’s
entrance is a contributing factor to the hive’s productivity and health, then it makes sense
to use computer vision traffic quantification methods to assess bee colony strength and,
hence, the price paid per pollination colony. Winfree et al. [36] report that the flowers of
watermelon and muskmelon are active for only one day when they open at daybreak and
close by early afternoon. If this day is known in advance, then computer vision traffic
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quantification can be used to choose on the basis of the previous traffic assessments which
colonies can be sent to a specific pollination event.

4.2. Energy

The energy footprint of making DL and ML models operational is not confined to
model training. It also includes the footprints of data curation and model evaluation. As
shown in Table 3, the model training alone took 1464 h and 300.39 kW-h. To put this
energy footprint in perspective, we note that, according to the energy bills available to us
from the city of Logan, Utah, a 3-bedroom apartment with four residents in Logan, Utah
used 382 kW-h in November 2017 and 491 kW-h in December 2019. Thus, training the
three models for this investigation was equivalent to 79% of the apartment’s total energy
amount in November 2017 and 61% of its energy amount in December 2019. If we look
at the monthly and seasonal OEF estimates in Table 8, we can see that the seasonal OEF
of BeePiP with YOLOv3 in Logan, Utah is 807.60 kW-h, which is 93% of the apartment’s
2-month total CPA (873 kW-h). The seasonal energy footprints of BeePiP with YOLOv4-tiny
and of BeePiP with YOLOv7-tiny are, respectively, 89% and 81% of the same 2-month
total. These percentages are in line with the energy footprint estimates of DL models by
other researchers, e.g., training a single DL model can emit over 626,000 pounds of carbon
dioxide, i.e., the amount equivalent to the carbon dioxide emissions of five U.S. automobiles
over their lifespans [20]. Cloud computing takes vital resources such as water and energy
from the environment and puts back into it potentially harmful by-products such as heat,
carbon dioxide, and electromagnetic radiation.

Since many DL models have significant data engineering energy footprints, we need a
means to estimate their energy efficacy (EFF). We addressed this question by designing an
energy efficacy formula in (2) to estimate the number of performance accuracy units per
unit of the data engineering energy footprint. From the perspective of accuracy, YOLOv3
was better than YOLOv4-tiny and YOLOv7-tiny. However, from the perspective of EFF
in Table 6, YOLOv7-tiny was better than either YOLOv3 or YOLOv4-tiny. Furthermore,
YOLOv7-tiny could infer bee objects in individual images, albeit insufficiently fast, on a
single Raspberry Pi computer, which, in principle, makes it feasible to achieve faster run
times and lower OEFs by distributing bee object inference with YOLOv7-tiny across several
Pi computers. Thus, YOLOv7-tiny appears to us to be the most promising model to train
on larger datasets if a primary objective is to obtain non-invasive computer vision traffic
quantification methods with maximal EFFs and minimal OEFs.

4.3. Related Bee Traffic Research

Table 9 lists several research projects related to our investigation. Kimura et al. [6]
proposed a method to count bees and measure their motion on internal frames of an
observation hive with transparent walls. The system recorded videos with a digital camera
(GR-HD1; JVC, Yokohama, Japan) mounted on the side of the hive. The camera had
a resolution of 720 × 480 pixels and a frame rate of 29.97 fps. The size of an inside
hive frame was 44 cm in width and 19.6 cm in height. The proposed method included
three steps: the extraction of a honeybee-code image from a whole image of the inside
frame, the separation of single and plural regions of bees from the code image using an
average honeybee body size and shape given as parameters, and tracking of bee motions in
sequential images. The vector quantization method separated a single image into multiple
regions with approximately the same characteristics. Each such region was represented by
a centroid vector, also called the code vector. The researchers experimentally determined that
eight code vector values were optimal to separate individual objects on one observation
hive frame. These code vectors corresponded to the bee body, the dark and light of the
bee wing, the hive, the hive frame, and the background and noise. Eight code vectors
represented all identifiable objects in four-dimensional space. The method was evaluated
on three randomly selected frames from a 10-second movie (300 frames) and the percentage
of the objects correctly identified by the system in each frame was manually counted. The
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vector quantization method identified 510 bees out of 704 manually identified bees in the
first frame, 522 out of 718 in the second frame, and 516 out of 700 in the third frame, which
translated to an average accuracy of 72.95%. The method also determined the active areas
in the bee frame by extracting the trajectories of walking bees. Some data on the honey bee
waggle dance were obtained.

Chen et al. [7] proposed a system for counting tagged bees and identifying their
orientation at the hive’s entrance. The system’s hardware included an infrared camera
(DMK31AU03, The Imaging Source Europe GmbH, Germany ) and an infrared LED light
source for lighting stabilization. The camera was connected via a USB port to an Intel Core
2 Duo 2.1 GHz Windows workstation with 4 GB of RAM. The direction and speed of bee
motion was restricted with a passage on the landing pad constructed with 3 mm transparent
acrylic sheets. The external dimensions of the passage were 145 mm × 80 mm × 9 mm
(length × width × height). The camera was positioned above the passageway to acquire
images of bees crawling in and out. The exact hive type was not specified. To identify
foragers in videos, small circular paper tags were glued to the backs of 100 bees. Each
tag had a diameter of 3 mm and several special characters to denote identification and
orientation. To be tagged, each bee was immobilized by being placed in a freezer for
3–4 min. The fine hairs on the back of the immobilized bee were removed and an instant
adhesive was used to glue the tag to the bee’s thorax. To locate tagged bees in a video
frame, a circular Hough transform [37] was used to detect the presence of circles. A black
positioning dot character on the tag was used to identify the orientation of the characters.
The character symbols were segmented with an optical character recognition package, and
a support vector machine (SVM) classifier was trained to recognize individual characters,
thereby identifying the individuality of the bee and its orientation. The character symbol
recognition and identification accuracy rates were 98% and 86%, respectively. The system’s
performance was tested in a laboratory by placing five tagged bees in the closed passageway
where the bees walked back and forth searching for the exit. The camera was taking images
for 30 min and correctly identified 154 entry and exit instances out of 189 ground truth
instances. The system was deployed for 15 days in the field to track 100 tagged foragers.
Due to forager attrition, 82 bees were detected on day 1; 59—on day 2; 40—on day 3; by
day 8, the number of detected bees fell to 4.

Dussaubat et al. [8] proposed an optic bee counter system that included a digital
camera facing down the entrance of a 4-frame nuc hive. Eight tunnel passages were placed
at the bottom of the entrance. Each tunnel allowed only one bee to enter or exit the hive in
such a way that the bee’s thorax was exposed to the camera. The width of the passages
corresponded to the camera’s lens angle. The camera’s model, image resolution, and frame
rate were not specified. The only performance characteristic in the publication was that the
system’s bee counting software achieved a minimal error of 3–4% when counting bees in
the tunnels. The software controlled three cameras, one camera per each 4-frame nuc to
analyze the images in real time. The frame rate was dynamically adjusted to minimize the
chance of missing bees in the tunnels.

Chiron et al. [9] proposed a system to detect and track honey bees in the hive’s vicinity
with 3D stereo vision methods. The image acquisition was done with a G3 EV Stereo
Camera (TYZX, Menlo Park, CA, USA). The camera had a resolution of 752 × 480 pixels
and a frame rate of 50 fps and was mounted on a 2-super Langstroth hive facing down
to the landing pad. No hive modifications were done. The camera generated pairs of left
and right grayscale images and a corresponding disparity map. A stereo pair matching
algorithm computed holes, i.e., unmatched areas, for which there was no certainty that
they corresponded to flying bee objects. Flying bee objects were identified by peaks on the
depth map or, under certain conditions, by holes. For multi-target tracking, a method was
proposed based on the Kalman filter [38] and the Global Nearest Neighbors (GNN), [39]
whereby each flying bee target was associated with a Kalman filter and the GNN matched
uncertainty measurements against known tracks. The software and hardware details
were not specified. The evaluation dataset consisted of 500 randomly selected frames for
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segmentation ground truth under different lighting conditions and 80 manually annotated
trajectories in ≈1000 frames from one Langstroth hive. 4.8% of bees were incorrectly
marked due to human error. The evaluation of the segmentation method resulted in 4.15%
of false negatives and 19.54% of false positives. The tracking performance decreased with
the number of tracked bee targets with approximately 82% of recovered targets under
normal conditions.

Table 9. Related bee traffic research; NA—not available in the text of the publication or supplementary
materials; HWR—hardware; SWR—software; DC—digital camera; IC—infrared camera; SC—stereo
camera; HDC—high definition camera; OBS—observation; UNSPC – unspecified; 4FN—4-frame nuc
hive; MFD—modified hive; UMFD—unmodified hive; 1S—one super; 2S—two super; 3S—three
super; LST—Langstroth; RPi—Raspberry Pi.

Cite Objective HWR SWR Data Hive

[6] Counts of walking DC NA 3 images from OBS
bees on inside 1 10-second
frames; walking bee video from
trajectory detection 1 hive

[7] Tagged forager IC C++, NA UNSPC;
counts at hive LED Light OpenCV MFD
entrance

[9] Counts of flying SC NA 1500 images 2S LST,
bees; flight trajectory from 1 hive UMFD
tracking in hive
vicinity

[8] Counts of walking DC NA NA 4FN,
bees at hive MFD
entrance

[12] Bee counts; RPi B+, C++, 400 images 1S LST,
in-out traffic RPi Cam OpenCV, from 1 hive MFD
measurement at MySQL
hive entrance

[11] Pollen bearing RPi 2, Python, 150 images NA;
forager counts RPi 2 HDC, OpenCV, from 1 hive MFD
at hive entrance Android phone MATLAB

[13] Pollen bearing DC, NA 3500 images 4FN,
forager counts Jetson TX2, from 5 nucs MFD
at hive LED Light,
entrance 2 RXT 2080 GPU

[15] Directional bee RPi 2, C, Python, 23,808 images 1S/2S
traffic estimation RPi DC OpenCV from 2 hives LST,
in hive vicinity RPi DC UMFD

[40] Bee counts RPi 2, Python, 54,678 images 1S/2S/3S
in hive vicinity RPi DC OpenCV from 5 hives LST,

UMFD

This study Counts of flying RPi 2, C, Python, 9419 images 1S/2S
bees in hive RPi DC, Darknet, from 10 hives LST,
vicinity GTX-980 GPU OpenCV UMFD

Babic et al. [11] proposed a pollen-bearing forager counting system that consisted of a
Raspberry Pi 2 computer coupled to a Raspberry Pi High-Definition (HD) camera with a
resolution of 1280 × 720 pixels and a frame rate of 30 fps. The system included an Android
cell phone for a wireless area network (WLAN) connection to an Intell i3 workstation with
8 GB of RAM. Background subtraction was applied to each video frame with the Mixture
of Gaussians (MOG) [41]. The Pi camera faced down on the landing pad. A glass plate



Sensors 2023, 23, 6791 19 of 25

was placed 2 cm above the pad, thus forcing the bees to crawl ≈11 cm before entering or
leaving the hive. For each non-background blob with specific size criteria, a four-feature
vector descriptor of color variance and eccentricity coefficients was computed. A two-way
nearest means classification (pollen-bearing forager vs. non-pollen-bearing forager) of
descriptors was done to obtain the counts of pollen bearing workers. This classification
was executed on the Raspberry Pi computer. The images were also sent to the workstation
where they were processed by an SVM. The dataset consisted of 50 RGB images of pollen-
bearing foragers and 50 RGB images of foragers without pollen loads taken from 40 RGB
video frames from a managed hive of unspecified type. The testing was done on 50 video
frames with a total of 354 bees from the same hive. The two-way blob classification method
achieved an accuracy of 88.7% and the SVM classifier achieved an accuracy of 87.42%.

Tu et al. [12] proposed a system for counting bees at the hive’s entrance and measuring
incoming and outgoing traffic. The system’s hardware consisted of an Internet-enabled
Raspberry Pi B+ computer coupled to a Raspberry Pi camera placed in a box with stable
LED light sources with diffusers and a mirror for controlling lighting conditions. The
camera was directed toward the mirror placed at a 45-degree angle to view the bees from
below. The camera had a resolution of 1920 × 1080 pixels and a frame rate of 25 fps. Videos
were captured in H.264 format and converted to MP4. RGB frames were extracted from
MP4 videos. The bee counts and estimates of in-out traffic were calculated from individual
frames. The bees were allowed to enter or exit the hive only through a special passage
in order to probit the overlapping of individual bees. Each video image was grayscaled
and the mean overall pixel intensities were calculated. A threshold was chosen on the
basis of the computed mean to segment the image. If the total number of foreground
pixels obtained through background subtraction in the binary image was greater than a
manually determined threshold, the counting of bees was calculated by using a manually
crafted linear regression equation as a function of the number of bees in the image, the
total number of foreground pixels, and two manually chosen linear regression parameters.
Inferential statistics were used to estimate the orientation of bees and measure incoming
and outgoing traffic. The computation ran on the Raspberry Pi computer and the extracted
bee counts and in-and-out traffic evaluations were sent to an off-board MySQL database
on an unspecified Internet host. The H.264 and MP4 videos were deleted. The dataset
consisted of 25 training and 100 testing 30-second videos from a hive with one deep super
with 6 to 25 honey bees in each frame recorded at 30-minute intervals. To make image
processing run on the Raspberry Pi, the frame rate was reduced to 5 fps, and the videos
were taken every 10 min. To evaluate the system’s performance, 400 images were randomly
selected from the same hive and all bees were manually counted. One video from the same
hive was used to evaluate the in-out traffic measurements. The R2 coefficient between the
system’s counts and manual counts was 0.987.

Ngo et al. [13] designed and deployed a pollen-bearing forager counting system for 4-
frame nuc hives. The system used an off-the-shelf RGB web camera (Model: C920, Logitech
International S.A., Switzerland). The camera had an image resolution of 640 × 480 pixels
and was coupled to an embedded Jetson TX2 system via a USB port. The camera was
enclosed in a black acrylic box equipped with a red LED panel for light control. The
average frame rate was 25 fps. The camera looked down at the landing pad. A transparent
pathway was placed on the landing pad, which forced the bees to walk an unspecified
distance in and out of the hive. The YOLOv3-tiny model was trained on two GEFORCE
RTX 2080 GPUs with 8 GB of RAM to do the two-way classification of pollen-bearing
vs. non-pollen-bearing foragers. Images were extracted from the video stream of bees
walking in and out. The trained YOLOv3-tiny model in conjunction with the Kalman filter
and the Hungarian algorithm returned the counts of in-coming pollen-bearing, incoming
non-pollen-bearing and outgoing non-pollen-bearing bees. The training dataset included
3000 images and the testing dataset included 500 images from five 4-frame nuc hives. The
mannual image annotation was done with LabelImg [42]. The training of YOLOv3 was
done for 20,000 iterations with a learning rate of 0.001 until the average loss was under
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0.17. The performance of the system was evaluated on 34 10-minute randomly selected
videos at different times and different nuc hives. In each video, the number of incoming
pollen-bearing bees was manually counted and compared to the system’s counts. The
number of pollen-bearing bees in each video ranged from 34 to 166. The mean absolute
error regression analysis of manual and automatic counts showed that the system slightly
underestimated the manual counts.

Kulyukin et al. [15] proposed BeePIV, an algorithm that uses particle image velocimetry
methods [16] to estimate the amount of incoming, outgoing, and lateral bee traffic in videos
from on-hive loggers. BeePIV converts video frames to particle motion frames, assembles
motion points into motion particle clusters, and computes particle displacement vector
fields. Individual displacement vectors are classified as incoming, outgoing, and lateral,
and the vector counts in each class are used as measurements of incoming, outgoing, and
lateral traffic. The system’s hardware consisted of a Raspberry Pi B 1.2 computer with
four cores coupled to an 8-megapixel Pi camera. The hardware units were packaged in
a standard Langstroth super and placed on top of a standard Langstroth hive with the
camera looking down on the landing pad. No structural modification of the hive was done.
Raw H.264 30-second videos with a resolution of 1920 × 1080 pixels and a frame rate of
25 fps are captured every 15 min. Each extracted frame was converted to PNG and resized
to the 60 × 80 resolution for in situ processing on the Raspberry Pi computer. The mean
video processing time was 2.15 min with a standard deviation of 1.03. The evaluation
dataset consisted of 32 30-second videos (744 frames per video) from two on-hive loggers
at an apiary in Logan, Utah, USA deployed from May to November 2018. The error rate
was computed as the absolute difference between the system’s omnidirectional bee count
estimates and the human counts varied from 0 to 13 per video with a mean of 3.4 and a
standard deviation of 3.97. Obtaining ground truth from human evaluators for directional
bee traffic measurements turned out to be humanly impossible due to very large numbers
of bee motion vectors detected in high-traffic videos. A mediate method was chosen instead
that matched the time series of incoming and outgoing motion vector counts from two
hives under different conditions with dynamic time warping (DTW). For hive 1, the mean
DTW was 6.08 with a standard deviation of 1.67; for hive 2, the mean DTW was 5.4 with a
standard deviation of 1.81.

Kulyukin et al. [40] compared the performance of shallow convolutional networks
(SCNs) and reinforced random forests (RRF) as classification methods to determine if
image regions selected by motion detection contained bees or bee shadows on four image
datasets (BEE1, BEE2, BEE3, BEE4 [43]) of 54,678 honey bee images. For a given dataset,
a convolutional network was considered shallow if its memory footprint on disk was less
than or equal to the footprint of the largest RRF trained on the same dataset, which was
50 MB. The performance of SCNs and RRFs were comparable with the validation accuracies
ranging from 88% to 97%.

4.4. Perspectives

Of ten projects in Table 9 five (i.e., [7,8,11–13]) restricted hive access and one (i.e., [6])
used an observation hive with transparent walls. In addition to restricting hive access,
Chen et al. [7] also placed visual paper tags on individual bees. Thus, 60% of the investiga-
tions were performed in hive environments never encountered by commercial beekeeping
operations or most amateur and professional apiarists who use regular, structurally un-
modified Langstroth hives or close variants thereof, such as Dadant [44]. While the results
obtained with modified hives are valuable, they will unlikely generalize to the environ-
ments encountered by most apiarists. Hive access modifications necessarily interfere with
forager flight patterns, because the land-and-crawl pattern investigated in restricted hive
access studies is only one of the exit and entry patterns of honey bees in managed hives, as
we noted in Section 4.1. The two most common patterns in our videos were bees flying in
or out at high speeds along straight lines, i.e., the straight pattern, or zigzagging in or out
at lower speeds, i.e., inward/outward zigzag. In both patterns, bees flew in or out without
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landing or walking on the pad. Thus, restricting hive access with acrylic sheets or similar
modifications prevents bees from engaging in these flight patterns.

Many commercial beekeeping operations are migratory. They make their profit
through pollination contracts in various far-flung locations, which require them to move
large numbers of hives from location to location to keep up with tight pollination sched-
ules. For example, in the U.S., the honey bee pollination colonies are scheduled to be in
California in February, in Florida in March, in New York in May, and then in Maine [45].
The February pollination of California almonds requires 2.4 million honey bee colonies,
i.e., over three-quarters of the U.S. colonies, most of which are moved there by truck every
year [46]. To convince commercial operations to become stakeholders in and adopters of
computer vision hive monitoring technologies, the latter must be easily installable, quickly
movable from hive to hive and from apiary to apiary, and require zero calibration. These
requirements cannot be satisfied if every hive must be modified for access and stable
illumination for the system to become operational.

It is understandable why 4-frame nuc hives are used in some experiments. These hives
contain only four frames of bees and are easier to mount various hardware components
on in order to control the lighting conditions as well as the speed and level of bee traffic.
However, the levels of bee traffic in such environments are significantly lower than the bee
traffic levels in managed bee colonies in regular hives. At the height of the summer season,
a healthy bee colony in a Langstroth hive with 3 or 4 10-frame deep supers has 30 or 40
(instead of 4) full frames and houses ≈ 60,000 bees (Ch. 2, p. 23 in [47]) While the forager
numbers fluctuate during the season and depend, among other things, on the queen laying
patterns (Part 1, p. 30 in [48]), Tauz (Ch. 3, p. 68 in [49]) estimates that a single colony fields
between 100,000 and 200,000 foragers per year, with a single forager doing between 3 and
10 flights per day. Furthermore, Tauz estimates that during the summer, 100,000 foragers
complete several million foraging flights (Ch. 8, p. 217 [49]). These numbers indicate that a
computer vision system that monitors a regular managed bee hive with unrestricted hive
access has to cope with bee traffic levels that are orders of magnitude higher than those of
hives (e.g., 4-frame nucs or one-super hives) with restricted access.

None of the related studies in Table 9 did energy efficiency analyses of their systems.
Yet, many computer vision models have significant data engineering and operational energy
footprints (See, e.g., Tables 5 and 8), which must be taken into account to attract potential
stakeholders. Given the rising costs of electricity in many parts of the world, including the
U.S. West [21], the accuracy levels of some DL models may not be affordable to stakeholders.
In this regard, it is noteworthy and hopeful, that of 10 studies in Table 9, five advocated
for the use of low-power platforms and cameras and, as a consequence, computational
methods that do not include DL. It is also noteworthy that several investigations relate
estimates of bee traffic to other biotic and abiotic factors such as Nosema [8], collected pollen
amounts [13], and hive weight [32]. Such relations may warrant further investigation.

Running DL models on the Raspberry Pi platforms continues to be a challenge. While
working on this investigation, we successfully compiled and built YOLOv3, YOLOv3-
tiny, and YOLOv7-tiny from the C source with the Gnu C/C++ compiler (GCC) on the
Raspberry Pi 3 and Pi 4 ARM platforms with the Raspbian OS. However, we were unable
to run YOLOv3 with the Darknet detector on individual 1080 × 1980 PNG images either
on Pi 3 or Pi 4 even after increasing the pagination limit to 1 GB. While both YOLOv4-tiny
and YOLOv7-tiny detected bees on a small set of individual 1080 × 1980 PNG images on
both Pi 3 and Pi 4, it took both models, on average, over 2 min to process one PNG frame.

The above observations indicate that the use of these models in hive monitoring data
pipelines like Beemon or BeePiP necessitates access to a GPU computer via a local network
or to a GPU farm via cloud computing. The latter is problematic, because it incurs financial,
ecological, and environmental costs. Whether GPU computers in nearby buildings increase
levels of ambient electromagnetic radiation to cause negative impacts on the monitored
colonies remains to be seen. A better long-term solution for continuous hive monitoring
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data pipelines may be to make all computation run in situ on low-energy embedded
platforms like Raspberry Pi, thus eliminating offboard GPU computing altogether.

5. Conclusions

YOLOv3 can be used to quantify omnidirectional bee traffic in videos from on-hive
loggers, because it had no false positives and was the best model in terms of Precision,
Recall, F1, and IOU. However, this model will likely underestimate omnidirectional traffic
due to false negatives.

The performance statistics of YOLOv7-tiny, except for Recall, were better than those
of YOLOv3-tiny. In terms of energy efficacy, YOLOv7-tiny was better than the other two
models, which indicates that, of the three models, it is the model worth training on larger
flying Apis mellifera object datasets if a primary objective is to maximize energy efficacy.
YOLOv7-tiny had the smallest operational energy footprint after being integrated into a
hive monitoring data pipeline of 10 on-hive loggers and one GPU computer. Whether
YOLOv7-tiny can eventually be used as a reliable model to quantify omnidirectional traffic
in videos from on-hive loggers depends on whether the model’s false positives can be
reduced or eliminated and on whether the model’s bee object inference can be distributed
across several Pi computers to achieve smaller operational energy footprints.

While DL models have the potential to transform the video bee traffic monitoring of
managed colonies, their ultimate success depends on overcoming two challenges: large
data engineering and operational energy footprints and ecological and environmental costs
of increasing levels of water consumption and electromagnetic radiation. The accuracy vs.
energy tradeoff is here to stay. Thus, going forward, it is critical for precision apiculture
investigations to evaluate DL models (and other models, too) not only in terms of accuracy,
but also in terms of energy efficacy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23156791/s1, Figure S1: Annotated Figure 1 Left: An on-hive
BeePi logger on top of a 2-super Langstroth hive in Logan, Utah; bottom to top: (1) a landing pad; (2)
a light gray super; (3) a blue super; (4) a white super with the BeePi logger hardware; (5) a waterproof
plastic box with a Pi camera inside looking down on the landing pad; the box is attached to the front
of the third super with two screwed-on metallic brackets; (6) a wooden migratory hive lid on top
of the third white super. Figure S2: Annotated Figure 1 Right: 2 BeePi loggers on top of 2-super
Langstroth hives in Tucson, Arizona; the top boxes on hives contain the logger hardware; water- and
dustproof boxes on top of the second supers protect the cameras against rain and dust storms frequent
in that area of Arizona. Figure S3: Annotated Figure 2 Left: BeePi logger hardware; bottom to top: a
Raspberry Pi computer coupled to an 8-megapixel Pi camera; a five terabyte USB disk for archiving
data for redundancy in case of GPU computer failures or power supply disruptions; a Pi power
charger plugged into a waterproof power cord; videos are wirelessly transferred to a GPU computer
over an ad hoc 802.11 local network where they are processed and archived for redundancy in case
of logger storage failures. Figure S4: Annotated Figure 3 Left: A low-end, low-energy 8-megapixel
Raspberry Pi camera v2.1 inside a waterproof camera protection box attached to the front of the super
with the on-hive BeePi logger shown in the right picture. Figure S5: Annotated Figure 3 Right: An
on-hive BeePi logger on top of a one-super hive in Logan, Utah in May 2023; bottom to top: (1) a
bottom board with a landing pad; (2) a light gray super; (3) a white super with the logger hardware,
and a white waterproof camera protection box with the Pi camera in the left image; (4) a white
telescoping hive lid. Figure S6: Annotated Figure 8 Right: A GEFORCE GTX-980 GPU computer
plugged into a PM3000 power meter. Refs . [50–52] mentioned in supplementary materials.
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Abbreviations
CV, AI, DL, ML computer vision, artificial intelligence, deep learning, machine learning
ConvNet convolutional neural network or convolutional network
CHMDP continuous hive monitoring data pipeline
GPU, USB, OS graphical processing unit, universal serial bus, operating system
OmniBeeM, BeePIV omnidirectional bee motion, bee particle image velocimetry
CH, CVAT camera’s height, computer vision annotation tool
GHz, CPA, kW-h gigahertz, cumulative power amount, kiloWatt-hour
MP4, RGB, fps MPEG-4, red green blue, frames per second
YOLO You Look Only Once
TP, TN, FP, FN true positive, true negative, false positive, false negative
BTP_BFLMTP Bee True Positive and Bee Flight Motion True Positive
BTP_BCRMTP Bee True Positive and Bee Crawling Motion True Positive
BTP_BMTN Bee True Positive and Bee Motion True Negative
BTP_BMFN Bee Tree Positive and Bee Motion False Negative
BFN_BFLMTP Bee False Negative and Bee Flight Motion True Positive
BFN_BFLMFN Bee False Negative and Bee Flight Motion False Negative
BFP Bee False Positive
EFF, OEF energy efficacy, operational energy footprint
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