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A B S T R A C T

Bees play a crucial role in terrestrial ecosystems. However, beekeepers are unable to monitor the state of bee
hives (bees and environment) all the time, which often results in bees escaping or even dying. Currently, some 
researchers provided the scheme of intelligent beehive monitoring system equipped with the Internet of Things 
(IoT), There remain two challenges: accurately monitor the environmental status around the hive and accurately 
track and monitor bees in real time. With the development of the IoT and computer vision algorithms, we hope to 
provide an automated and efficient system to meet the above challenges. In this paper, we proposed a hive 
monitoring system, and build a visualization module in the cloud to monitor the activity of bee colonies and the 
environmental dynamic changes. (1) We proposed a multi-bee tracking algorithm to solve the problem of 
monitoring bees at the door of the hive; (2) we constructed a dataset containing various complex scenes, named 
BEE22, for training and testing the performance of our algorithm; (3) we designed a bee counting rule, based on 
results of multi-bee tracking algorithm, to reasonably count the bees entering or leaving the beehive; (4) we have 
deployed multiple sensors around(center, margin, door, and environment) the hive to accurately reflect the 
changes in the environment around the hive. Experimental results demonstrate the effectiveness and excellence 
of our system. In particular, the tracking performance of the multi-bee tracking algorithm reaches 83.5 % ± 0.7 
% Multiple Object Tracking Accuracy (MOTA) and 77.3 %±0.2 % Multiple Object Tracking Precision (MOTP), 
speeds up to 16 frames per second, compared with other algorithms, MOTA and Identity F1 Score (IDF1) are 
improved by 5.4 % and 8.2 % respectively. Moreover, our counting algorithm also achieved excellent results, 
with root mean square error (RMSE) of 1.3 ± 0.1, 0.2 ± 0.0, and 1.6 ± 0.1 in counting the number of bees 
current, entry, and out scene in an episode, respectively. After that, the system will be deployed and monitored 
for a long time in the actual scenario, it was found that the activity of bees decreased significantly under heavy 
rainfall conditions. Additionally, the activity of the bee colony will also increase accordingly, when the ampli
tude is 500 dB to 2000 dB, the temperature of the center of the beehive is 25 ◦C to 37 ◦C, and the humidity is 48 
% to 67 %. In summary, our system can provide valuable information for bee farmers to make control decisions 
on hives.

1. Introduction

Bees play a crucial role in terrestrial ecosystems, especially for those 
flowering plants, whose normal flowering and fruiting is usually based 

on bee pollination [1]. The European Union Conference once pointed 
out that nearly 80 % of the world’s food crops are pollinated by bees [2]. 
With the global food challenges brought about by the continuous pop
ulation growth, the transformation and upgrading of the bee farming 
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industry, which is the "guarantee army" of food production, is urgent 
[3].

Although constant improvement has been made, human beings still 
face many challenges today, such as bee separation [4] and the collapse 
of bee colony barriers [5]. The reason is that so far, most beekeepers still 
adopt traditional manual management methods, including regularly 
observing the activity of bees in the area near the door of the beehive 
and opening the beehive to obtain information inside the beehive [6]. 
Beekeepers will judge the status of the bee colony based on this infor
mation and their previous beekeeping experience and then take corre
sponding control strategies. It is impossible to know about the status of 
the bee colony in a timely and accurate manner only by this manual 
management method, which leads to a lag in the management of the bee 
colony by beekeepers, resulting in many losses. In addition, there are 
still many limitations in traditional management methods. On the one 
hand, the colony state is generally normal, meaning that the daily 
monitoring of beekeepers is not only time-consuming and 
labor-intensive but also inefficient. On the other hand, frequent opening 
of beehives will cause certain disturbances to the life of bees.

The automated monitoring of bee activity provides new ideas for 
beehive management. In this regard, researchers have done much 
exploration work [7-11]. Early popular monitoring methods include 
photoelectric sensors [12], capacitive sensors [13], and radio frequency 
identification [14], but these methods can only be used to count the 
number of bees passing through the door of the hive, which is not 
enough to measure the overall situation of the bee colony. This is 
because there are different species of bees in the colony, such as guard 
bees, which stay nearby or hover to guard the nest [15], while forager 
bees fly away from the hive to forage for food at a distance [16]. 
Therefore, to effectively assist beekeepers in making a reasonable 
assessment of bee colony status and potential risks, automated moni
toring methods are required to provide more dimensional information, 
including the number of bees near the door of the beehive and the 
number of bees in attendance, etc.

The development of image sensors and computer vision technology 
in the past two decades has provided a potential solution to the above 
tasks. Specifically, these tasks can be viewed as object detection and 
multi-object tracking problems in computer vision. The object detection 
task requires the algorithm to locate and identify all the objects of in
terest in a given picture [17], while the multi-object tracking task 
further requires the algorithm to match the same object in any two 
adjacent frames of the image sequence while simultaneously processing 
objects coming and leaving the scene [18]. In recent years, many com
puter vision-based methods have been applied to the task of monitoring 
bee activity outside the beehive, like support vector machines [19], 
Gaussian mixture models [20], Canny contour recognition [21] and 
other methods, all are used to detect bees in images, to acquire statistics 
on the number of bees in the scene. For the problem of tracking multiple 
bees in an image sequence, several methods such as Bayesian tracker 
[22], Kalman filter [23], and optical flow method have emerged [24] to 
count the number of bees entering and leaving the hive door according 
to the observation of the designed entry and exit division area. However, 
the division of the entry and exit areas by the above methods is based on 
subjective experience, which will cause a significant counting error, 
especially when the bees are in the honey collection period [25]. Then, 
when the statistics of the number of bees entering and leaving are in 
units of days, the data obtained by the current method will be far from 
the actual situation, resulting in a wrong conclusion. In addition, the 
practical application scenarios also pose many challenges to these al
gorithms, including (1) the appearance of bees is highly similar, and it is 
challenging to extract differentiated features; (2) the bees will undergo 
non-rigid deformation during movement, thus changing the appearance 
features; (3) the bees in the scene will produce severe mutual occlusion 
in dense situations, resulting in missed detection; (4) the movement 
patterns of bees are complex and changeable and difficult to predict. In 
light of the above challenges, a series of methods currently used can only 

be applied for monitoring tasks when there are only a few bees and a 
relatively small degree of movement due to the limitations of insuffi
cient representation ability and poor robustness. They cannot be applied 
in long-term and accurate monitoring of bee activities in complex and 
changeable scenarios.

Benefiting from its powerful representation ability and generaliza
tion performance, deep learning technology has been brilliant in com
puter vision and other fields in recent years. Some deep learning-based 
computer vision methods have been successfully applied and imple
mented in various industries [26,27]. However, to the best of our 
knowledge, there are few studies that combine deep learning technology 
with monitoring of bee activity outside the hive. For the bee detection 
task, neither the Faster-RCNN algorithm [28] nor the YOLOv3-tiny al
gorithm [25] currently used by researchers can achieve a balance be
tween accuracy and speed. However, the research on deep learning to 
solve the multi-bee tracking task is still blank. Therefore, according to 
the existing challenges of bee monitoring tasks outside the beehive and 
the shortcomings of current application methods, based on deep 
learning, this paper proposes a tracking-by-detection (TBD) and tracking 
framework and constructs a large-scale sequence dataset of bee activity 
images for deep learning. The training and testing of the model realize 
long-term, accurate all-weather automatic real-time monitoring of the 
number of bees entering and leaving the beehive door and the activities 
of nearby bee colonies.

In addition to monitoring bee colony activity, the environmental 
status inside and outside the beehive [7] is also an important indicator 
for assessing bee colony status. Studies have shown [29] that honeybees 
usually require a suitable range of weather conditions for temperature 
and humidity to participate in foraging activities. However, the human 
body cannot accurately perceive environmental states such as temper
ature and humidity. If beekeepers formulate control strategies based on 
this information with significant errors, it will inevitably bring unpre
dictable adverse effects to the bee colony. Therefore, using precise 
equipment to automatically monitor the environmental conditions 
around the beehive is also an urgent problem to solve in the field of bee 
farming.

In the past ten years, scholars have tried different sensing technol
ogies to measure the status of bee colonies, including temperature [30], 
humidity [31], sound [32], weight [33], and chemical [34] sensing. 
However, many states of a bee colony, such as foraging, bee splitting, 
and other behaviors, are often influenced by multiple environmental 
factors [35]. Therefore, using only a single sensor is not sufficient. Some 
current work has considered this issue and combined the above sensing 
techniques in different ways, trying to reveal the quantitative relation
ship between the environment and some specific swarming phenomena, 
such as colony barrier collapse [36,37]. It is worth noting that the 
environmental states of different areas around the beehive are pretty 
different. For example, the temperature outside the beehive changes 
with sunrise and sunset, while the temperature in the center is relatively 
constant [38]. Therefore, it is challenging to reflect the actual envi
ronmental state by relying only on a single location’s sensor data. In this 
paper, we consider installing multiple sets of multi-type sensors at 
different positions of the beehive to reasonably describe the environ
mental state around the beehive.

In summary, Our study offers five notable contributions: (1) a multi- 
bee tracking algorithm, which combines motion and appearance fea
tures to e⃗cectively solve the mutual occlusion and ID switching between 
bees, (2) an automated and ecient system to continuously monitor the 
status of bee colonies in beehives, which can help beekeepers achieve 
better hive management, (3) a counting algorithm that can accurately 
count bees, (4) after long-term monitoring combined with comprehen
sive environmental factor data, quantified the relationship between bee 
activity and the surrounding environment, (5) construct a bee tracking 
dataset, and a dataset of an omnidirectional beehive environment, 
including temperature, humidity and sound, which is similar to the 
current related datasets.
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2. Materials and methods

2.1. System framework

In this paper, a set of beehive automatic monitoring systems is pro
posed to realize long term automatic monitoring of bee colony status and 
surrounding environment status in the beehive. The system framework 
is shown in Fig. 1 On the right side of the figure is the beehive. The black 
rectangle on the beehive represents the doorway for bees to enter and 
exit. In the beehive, we have deployed temperature and humidity sen
sors at the center, margin, and door of the beehive. The sound sensor is 
installed in the center of the hive, and the webcam is deployed at the 
upper left of the beehive door. A group of temperature and humidity 
sensors is installed on the circular buckle outside the beehive. We divide 
all the sensors into two modules. One is the bee activity monitoring 
module at the door of the beehive, which is mainly composed of web
cams; The other is the beehive environment sensor module, which is 
mainly composed of temperature, humidity, and sound sensors. Addi
tionally, we transmit the collected information about the state of the 
hive and the honeycomb environment to the cloud computing service for 
algorithm processing, storage, and visualization.

2.1.1. Automatic monitoring equipment
In this study, we designed and built a set of sensing equipment on a 

conventional beehive for production, relying on the Fujian Bee Biology 
Science Observation and Experiment Station of the Ministry of Agri
culture. As shown in Fig. 2, the installed equipment includes vision, 
temperature, humidity, and sound sensors distributed inside and outside 
the hive to automatically monitor the status of the bee colony and the 
environment inside and outside the hive.

The beehive selected in this experiment is shown in Fig. 2(a), with a 
size of 51 × 41 × 26 cm. The beehive has an opening at the top and is 
equipped with a beehive cover for the daily management of beekeepers. 
It should be noted that the light source at night will disturb routine work 
and the rest of the bee, so no additional light source is added during the 
experiment.

2.1.1.1. Visual sensing equipment. In order to meet the needs for long- 
term monitoring of bee colony status, this paper adopts a network 
camera with an automatic exposure adjustment function (Hikvision 
EZVIZ C3C full-color version as shown in Fig. 2(a)) to collect images data 
with stable quality under different lighting conditions. The webcam is 
located at the upper left corner of the door of the hive, and has a reso
lution of 2560 × 1440, a frame rate of 25 frames per second, a focal 
length of 2.4 mm, and a video encoding method of H.264. During the 
installation process, we first used rivets to embed a 20 × 10 × 3 cm 
wooden board at the upper left edge of the bee entrance and exit side of 
the beehive and separated from the beehive cover, and then fixed the 
camera on this board. To obtain an image with sufficient clarity and to 

allow the scene from the camera’s perspective to sufficiently cover the 
active area of most bees near the door of the beehive, we repeatedly 
adjusted the position and angle of the camera and finally determined the 
position of the camera on the beehive’s door. The left side of the 
entrance and exit is 51 cm, the front side is 15 cm, and the top is 26 cm. 
At the same time, the camera is aimed at the bee’s entrance and exit.

Additionally, to reduce the interference of the image background to 
the visual algorithm, we covered the entire box surface on the bee 
entrance and exit with the off-white background paper, leaving only the 
beehive entrance area. It is worth mentioning that beekeeping experts 
recommend using off-white background paper because some other 
colors may be offensive to bees and interfere with their routine living 
habits.

2.1.1.2. Environment sensing equipment. The activity of a bee colony is 
affected by the state of the environment [39], For example, when the 
temperature and humidity are suitable, bees will actively participate in 
foraging activities. According to the comparative analysis, this paper 
will use temperature, humidity, and sound sensors to monitor the 
environmental status of the beehive. In addition, bees are more sensitive 
to the perception of environmental conditions. Indeed, the bee colony 
will autonomously regulate the temperature in the center of the hive, 
which is constant at around 35 ◦C [40]. Therefore, to accurately analyze 
the impact of the environment on the state of the bee colony, it is 
necessary to use sensor devices with sufficient accuracy.

To accurately measure the temperature and humidity around the 
beehive and minimize the impact of sensor equipment on the activity of 
the bee colony, this paper uses a probe sensor model YC-A, which 
combines temperature and humidity monitoring functions to measure, 
the sensor has a length of approximately 50 cm and can detect the center 
of the beehive. The accuracies are 0.1 ◦C and 1.5 % respectively, and the 
dimensions are 3.3 × 0.3 cm, as shown in Fig. 2(b). Additionally, the 
sensor has a measurement range of − 40 to 125 ◦C and 0 to 100 % RH for 
temperature and humidity, respectively, with a data acquisition fre
quency of 1 time per second, and is equipped with a waterproof and 
moisture-proof protective case. Since the interior of the beehive is 
almost a closed space, and there are a large number of bees moving 
inside the beehive, there may be large differences in temperature and 
humidity in different areas inside and outside the beehive. The mea
surement data of a single location is not enough to reflect the real 
environment around the beehive. Therefore, we deployed four temper
ature and humidity sensors at different locations inside and outside the 
beehive. One of the sensors is fixed on the edge of the beehive through a 
circular buckle to collect the temperature and humidity of the external 
environment; the other three are respectively installed at the door of the 
beehive, the center of the beehive, and the margin of the beehive. The 
specific locations of these four sets of temperature and humidity sensors 
as shown in Fig. 2(b).

In addition to temperature and humidity, sound is also an important 

Fig. 1. Beehive monitoring system.
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indicator for assessing the environmental state of a bee colony. Since the 
sound frequency range that bees can emit is around 300 Hz [41], we 
used a DS-923AT sound sensor produced by Shenzhen Fiberhome Audio, 
whose response frequency range is 20 to 20,000 Hz. Considering that 
our primary concern is the state of the bee colony, and at the same time 
to avoid affecting the colony, we fixed the sound sensor in the center of 
the back of the comb through push pins. The specific location of the 
sound sensor as shown in Fig. 2(b).

2.1.2. Data collection and processing
After the visual sensing device is activated, the area near the door of 

the beehive will be used as the monitoring scene, and the video will be 
automatically shot at a frame rate of 25 frames per second for 24 h 
without interruption to achieve the long-term, all-weather and real-time 
recording of bee colony activities. The captured video needs to be 
further processed by detection and tracking algorithms. This paper uses 
a cloud computing service as the model inference platform, considering 
the high requirements of the algorithm on computing performance. 
Before that, we need to transfer the video from the local to the cloud 
computing services. We use 300 megabytes of bandwidth on both the 
local and cloud servers, and the transmission speed of 4 million pixel 
video images can reach 25 frames per second. To ensure transmission 
stability, we use EZOPEN, the private protocol of the EZVIZ camera, as 
the network transmission protocol. Due to the large area covered by the 
original shooting scene, we were only interested in the main activity 
area of the bees near the hive door outside the hive. Therefore, after the 
cloud server obtains the image stream from the video, the image is first 
preprocessed. That is, the region of interest is obtained by image crop
ping to reduce the interference of irrelevant backgrounds and improve 
the processing speed of the algorithm. Fig. 3 shows the scene comparison 
of the image before and after the cropping. The final reserved area is a 
15.7 × 12.56 cm rectangular scene, and the resolution is reduced from 
2560 × 1440 of the original image to 950 × 600. The algorithm then 
detects, tracks, and counts the bees in the cropped image.

For monitoring the bee colony environment, the temperature and 
humidity sensors used in this paper will collect data at a frequency of 1 
time per second and automatically forward the collected data in real- 
time through its built-in WIFI module. Similarly, environmental data 
is also transmitted to our cloud computing server, and the network 

transmission protocol used is Transmission Control Protocol (TCP) to 
ensure the stability of data transmission. Since the temperature and 
humidity data are text data and the amount of data transmitted each 
time is small, real-time transmission performance can be achieved. 
However, the sound sensor acquisition is an analog signal containing a 
large amount of data that cannot be transmitted in real-time by TCP. 
Therefore, this paper first installs a jetson TX2 embedded board locally 
to transmit data in real-time through Real-Time Stream Protocol (RTSP), 
then performs Fourier transform on the collected sound analog signal to 
amplitude data, and then resample at one time/sec. The preprocessed 
sound data can be transmitted in real-time through MySQL.

At the same time, we get the local weather conditions every hour by 
calling the weather API (URL=http://wthrcdn.etouch.cn/weather_ 
mini?citykey=101230101), and then transfer it to the database 
through MySQL.

2.1.3. Data storage and backup
To use a large amount of beehive monitoring data for further anal

ysis, we need to take some means of integrated management, and the 
database is a suitable one. Based on the MySQL database, this paper 
builds a set of beehive monitoring databases on the cloud computing 
services to realize the functions of storage, import, export, and update of 
visual, temperature, humidity, and sound sensor data. Tables S1, S2, S3, 
and S4 show the database field tables of temperature, humidity, sound, 
activity, and weather, respectively. Then the data is backed up on the 
cloud storage server.

2.1.4. Data visualization
To allow beekeepers to know about the overall situation of the bee 

colony in a timely, accurate, and intuitive way, this paper combines 
MySQL database and data visualization software to design and develop a 
visualization system for monitoring bee colony status and beehive 
environment. In Fig S4 and Fig S5, we show the environment and ac
tivity monitoring.

2.2. Algorithm description

2.2.1. Multi-Bee tracking algorithm
The bee activity monitoring algorithm at the door of the beehive 

used in this paper is shown in Fig. 4. and YOLOv5 [42] is used as the 
detector. Compared with Faster-RCNN [43], YOLOv5 is a single-stage 
detection algorithm, which does not need to generate candidate re
gions during detection, and can directly regress the object category and 
boundary, significantly improving the detection speed. Then, DeepSORT 
[44] is used as a multi-object tracker, which can reduce id switch and 
improve tracking accuracy compared with traditional tracking 
algorithms.

The network framework of YOLOv5 is mainly composed of input, 

Fig. 2. Deployment of sensors in the real environment.

Fig. 3. The clipping of the detection area.

Y. Zheng et al.                                                                                                                                                                                                                                   Smart Agricultural Technology 9 (2024) 100584 

4 

http://wthrcdn.etouch.cn/weather_mini?citykey=101230101
http://wthrcdn.etouch.cn/weather_mini?citykey=101230101


backBone, neck, and prediction. In the Input stage, to augment the data, 
the image is preprocessed. Then, in the backBone stage, the image is 
cropped by the focus structure, and the data is divided into four parts, 
each equivalent to 2 times downsampling, and a convolution operation 
is performed after splicing on the vertical channel. The bottleneckCSP 
and spatial pyramid pooling (SPP) are used in the neck network. The 
former reduces the amount of calculation and improves the inference 
speed, while the latter realizes the feature extraction of different scales 
for the same feature map, which is helpful for the improvement of 
detection accuracy. In the final prediction stage, the head model is 
mainly used to predict the final result, the anchor frame is marked in the 
grid according to the feature, and the probability of the object class and 
the final position of the frame are calculated through the loss, and the 
generalized intersection over union (GIOU) loss is used as the loss 
function of the bounding box, so the border has a speedy and good 
convergence effect.

Object occlusion is a big challenge in tracking algorithms in complex 
motion situations. In order to solve this problem, the DeepSORT algo
rithm adds appearance information to the cascade matching, improves 
the tracking effect of object occlusion, and reduces the situation of ob
ject jump (ID Switch). The workflow of the algorithm is as follows: first, 
create the corresponding Tracks from the results detected in the first 
frame, and at the same time, initialize the motion variables of the kal
man filter, and predict the corresponding frame through the kalman 
filter. Then, intersection over union (IoU) matching is performed in turn 
between the frame detected by the object frame and the frame predicted 
by tracks in the previous frame, and then the cost matrix is calculated 
based on the result of the IoU matching, and all the cost matrices are 
used as the input of the hungarian algorithm to obtain a linear matching. 
As a result, the boxes corresponding to its confirmed tracks and un
confirmed tracks are predicted by kalman filtering. Finally, there are 
three possible results after cascading matching. The first is tracking 
matching. Such tracks update their corresponding tracks variables 
through kalman filtering. The second and third types are mismatches 
between detections and tracks. At this time, the previously unconfirmed 
tracks and the mismatched tracks are matched with the unmatched 
detections in turn for IoU matching, and then the cost matrix is calcu
lated based on the result of the IoU matching.

2.2.2. Bee counting algorithm
To quantify the state of the bee colony, we consider monitoring the 

bees near the door of the beehive based on the depth vision algorithm 
and counting the number of bees entering or exiting the hive as well as 
the number of bees outside.

To this end, we designed a rule for judging bees entering and exiting 
the nest. The red box indicates the boundary of the bee’s entry and out of 
the nest. There are four bees in the figure, namely, No 1, No 2, No 3, and 
No 4. The bees in the gray box indicate the position of bees in the current 
frame, and the bees in the white box indicate the position of bees in the 
previous frame. In the upper left corner of the figure, the number of bees 
in and out and the number of bees in the current scene is calculated. as 
shown in Fig. 5. Use the tracking results of the algorithm to obtain the 
relationship between the position of the bee at the current moment and 
the previous moment and the bounding box. The basis for bees entering 

the nest is that the center of the bee is outside the bounding box at the 
previous moment, and the current moment is within the bounding box; 
the rule for bees to leave the nest is that the center of the bee is outside 
the bounding box at the previous moment, and disappears from the 
scene at the current moment. Fig. 5, at the moment, the No 1 bee will be 
judged to be in the nest, the No 4 bee will be out of the nest, and the No 2 
and No 3 bees are not in the state of entering or leaving the nest, so the 
number of bees entering and leaving the nest is 1.

Additionally, for the statistics of the number of areas outside the 
beehive, also known as the number of statistics in the scene, it is only 
necessary to count the number of bees tracked at the current moment. 
Therefore, in Fig. 5, the number of bees in the outer area of the hive is 3.

3. Results and discussion

3.1. Experimental conditions

The development and deployment of the sensor start in the summer 
and autumn of 2021 at the Bee Observation Base of the Ministry of 
Agriculture of Fujian Province, with data collection from March 1st, 
2022, to May 31st, 2022. In the data analysis in Section 3.5 only shows 
the analysis results from March 1rd, 2022 to March 29th, and the data 
from other months are used as supporting materials. The beehives are 
the existing beehives in the bee observation base; and our beehive has 
three nests, and the bees are Chinese honeybees. We collect data 
monitored 24 h a day, and due to the summer and autumn seasons, the 
ambient temperature is around 18 ◦C to 30 ◦C.

3.2. Implementation details

The detection and tracking models are trained on cloud computing 
services with a 3090 graphics card with 12 G of video memory. The 
detection tracking and counting algorithms are implemented using py
thon based on the PyTorch framework. At the beginning of the training 
phase, the training image of the YOLOv5 model is resized to 640 × 640 
pixels. Subsequently, images are used to increase the amount of training 
data and the robustness of the model. Enhancements include random 

Fig. 4. The framework of the multi-bee tracking algorithm.

Fig. 5. the block diagram of the bee counting algorithm.
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changes in exposure, saturation, hue, and rotation. In order to ensure the 
reliability of the experiment, 10 groups of models are trained, the seed of 
each group of models is from 50 to 59, and calculate the standard de
viation based on these 10 sets of results, the batch size is set to 32, and 
the initial learning rate is 0.001. To monitor the progress of the training 
process, the average loss and mean precision (mAP) were tested every 50 
times. Each set of training was performed for 600 iterations. After 600 
iterations, the average loss of the model converged to below 0.17. Maps 
are all over 90 %, indicating that the trained model is not overfitting. As 
a tracker, DeepSORT also trains ten groups of models, with seeds 
ranging from 50 to 59, with an initial learning rate of 0.001, and each 
group is trained for 600 iterations.

3.3. Dataset

In this paper, we constructed a BEE22 multi bee tracking dataset. In 
order to fully reflect the various activities of bees, we removed the blurry 
and motionless videos, and finally collected 16 videos with significant 
differences in bee movements. For annotations, we use DarkLabel 2.1, a 
free and public MOT labeling software to annotate the dataset. (details 
can be found at: https://github.com/darkpgmr/DarkLabel). Before 
starting the annotation, we set the record format to (frame, id, x, y, w, 
h), this format is consistent with the MOT17 [55] dataset to ensure the 
integrity of our tracking dataset. Afterwards, when annotating, for some 
bees with more than two-thirds of their bodies outside the image and 
weak bee features, we do not annotate them to ensure accurate detection 
of bees by the model, as shown in Fig. 6. Based on this, we obtained 16 
sets of image sequences with a frame rate of 25 and a resolution of 950 ×
590, consisting of 627 bees and labeled with 31,348 tags, as shown in 
Table 1. The complete dataset is available at https://drive.google.co 
m/file/d/1jSlhbEItF9nOVlnNchSS3KE8HxMFYQYl/view?usp=drive 
_link.

In the real environment, the number of bees entering and leaving the 
hive varies greatly at different times in a day. In order to make the model 
proposed in this paper more robust, the BEE22 data set contains 
different periods and different numbers of bees. The situation is divided 
into three levels: easy, medium, and difficult. The Fig. 7 shows the fre
quency of the number of bees at different levels: the number of bees in 
the simple scene is no more than ten, and it is relatively stable (Fig. 7a); 
the number of bees in the medium scene varies from 8 to 20 (Fig. 7b); the 
number of bees in the difficult scene is larger, from 9 to 29, and the 
change is obvious (Fig. 7c), mainly due to the fast movement of bees in 
difficult scenes, resulting in large changes in the number of bees. At the 
same time, we select three images from all image sequences as test data, 
namely: BEE22–12 (easy), BEE22–16 (medium), and BEE22–13 
(difficult).

3.4. Comparison of method performance

3.4.1. Evaluation of multi-bee algorithm
For the performance evaluation, we use the widely accepted MOT 

metrics including Multiple Object Tracking Accuracy (MOTA), IDF1 
score (IDF1), Mostly Track object (MT), Mostly Lost object (ML), False 
Positives (FP), False Negatives (FN), ID switches (IDS), etc. Among these 
metrics, MOTA and IDF1 are the most important ones. MOTA represents 
the tracking accuracy considering false positives, missed object, and 
identity conversion. IDF1 represents the comprehensive accuracy of 
identity accuracy and recall rate. The larger their values, the better the 
performance of the model.

In Table 2, we report the quantitative results obtained by our method 
on BEE22–12, BEE22–13, and BEE22–16 and compare them with the 
other methods [20,25,52-54]. In the same scenario, our IDF1 and MOTA 
metrics are optimal, which shows the superiority of our algorithm. 
Additionally, as the difficulty of the scene increases, the corresponding 
indicators decrease, which also shows that in difficult scenes, the 
tracking accuracy of the algorithm will be reduced due to the increase in 
the number of bees, and the fast-moving speed, and the severe occlusion.

To more intuitively reflect the algorithm performance, we integrated 
the indicators of all scenarios, As shown in Table 3, our method obtained 
the most advanced results, and the measured value of IDF1 increased by 
8.2 % compared with the ByteTrack. This shows that our method can 
achieve strong performance in identity retention, which we attribute to 
DeepSORT. Moreover, the measured value of MOTA also increased by 
5.4 %, which is much higher than the previous method, which indicates 
that the tracking accuracy of our method is optimal. In addition, our 
method has also achieved good results in MOTP, MT, ML, FP, FN, and 
Time, and realized real-time function, which indicates that the multi-bee 
tracking algorithm proposed by us can accurately monitor the status of 
bees in real-time under the real hive scene.

Additionally, as shown in Fig. 8, the visualization results of our al
gorithm results in different scenarios. Different bees are marked with 
different color boxes, and each bee is assigned a unique ID. the curve in Fig. 6. DarkLabel annotation data.

Table 1 
Information on the BEE22 dataset. The sequence name, pixel, frame rate, time, 
number of bees, and number of labels of the BEE22 dataset are shown. There are 
16 image sequences in total. In the same image sequence, each bee in each frame 
is a label, and the number of labels in each image sequence is finally counted.

Image 
Sequence

Pixel Frame 
Rate

Time 
(frame)

Number of 
Bees

Number of 
Labels

BEE22–01 950 ×
590

25 75 14 501

BEE22–02 950 ×
590

25 75 11 416

BEE22–03 950 ×
590

25 75 10 415

BEE22–04 950 ×
590

25 75 14 378

BEE22–05 950 ×
590

25 75 7 368

BEE22–06 950 ×
590

25 75 12 570

BEE22–07 950 ×
590

25 75 16 620

BEE22–08 950 ×
590

25 75 18 439

BEE22–09 950 ×
590

25 75 26 561

BEE22–10 950 ×
590

25 250 36 2482

BEE22–11 950 ×
590

25 75 12 356

BEE22–12 810 ×
430

25 250 21 1973

BEE22–13 950 ×
600

25 258 60 6462

BEE22–14 950 ×
600

25 360 141 8944

BEE22–15 950 ×
600

25 240 90 3093

BEE22–16 950 ×
600

25 254 139 3770
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the figure is the trajectory of the algorithm tracking bees. as shown in 
Fig. 8(a), in an easy scene, there are fewer bees and the movement is not 
intense, so the trajectory curve is short; as shown in Fig. 8(b), in the 
medium scene, the number of bees increases, and the movement 

trajectory of bees can be accurately tracked; as shown in Fig. 8(a) in the 
difficult scene, the number of bees is the largest and the motion is 
complex. The track line loss is caused by the error of the algorithm. It can 
be seen in the figure that our algorithm can accurately track bees in 
various scenarios, laying a solid foundation for the following statistics of 
the number of bees.

3.4.2. Evaluation of counting algorithms
To explore the accuracy of bee number statistics, we use the previous 

counting algorithm to count the number of bees that enter and leave the 
beehive in the current frame scene. Then we calculate the root mean 
square error (RMSE) between it and the real quantity. RMSE can reflect 
the degree of difference between the two samples. The smaller the value 
of RMSE, the closer the predicted result of the algorithm is to the result 
of manual marking, that is, the higher the accuracy.

Table 4 compares the statistical results of each algorithm in the bee 
test set. From the table it can be seen that almost all the indicators of our 
algorithm are optimal in different scenarios, indicating the superiority of 
our algorithm. Additionally, as the difficulty of the scene increases, each 
indicator increases continuously, which is also consistent with the 
tracking results of the previous algorithm in different scenarios. More
over, in the overall case, the counting error of bees entering the nest is 
the smallest, and the counting error of bees leaving the nest is the 
largest.

3.5. Influence of environmental factors on the activity of bee colony

According to the previous analysis of the statistical results of the 
number of bees, we use the two indicators of the number of bees in the 
scene and the number of bees entering the nest to measure the active 
state of the bee colony, which are called overall activity and foraging 
activity respectively. The factors that characterize the state of the 
environment around the hive include temperature, humidity, and sound 
in the center of the hive at different locations of a beehive.

3.5.1. Activity of bees at different times of the day
First, we analyze the active state of the bee colony at different times 

of the day, in which the overall activity takes the average hourly value. 
The foraging activity takes the cumulative hourly value, as shown in 
Fig. 9, the abscissa represents different times of the day, the left and dark 
blue boxes on the ordinate represent the overall activity of bees at the 
same time of the day (30 days in total), and the right and blue boxes on 
the ordinate represent the foraging activity The red line in the box 
represents the median number of bees, the horizontal line above rep
resents the upper limit of the number of bees at that time, the horizontal 

Fig. 7. Distribution of bee population in different scenarios.

Table 2 
Performance compared to other algorithms in different scenarios. The number of seeds for each group of models ranges from 50 to 59, and the standard deviation ± st. 
dev is calculated based on the results of these 10 groups. Our methods outperform all methods on this benchmark (↑ mean higher is better, ↓ mean lower is better).

Scene Methods IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ MOTA↑ MOTP↑ Time(ms)

Easy GMM+KF 5.0 ± 0.5 1.0 ± 0.0 13.3 ± 0.5 570.4 ± 18.2 1891.9 ± 6.1 9.6 ± 1.8 − 26.4 57.0 ± 0.3 1.0 ± 0.0
​ YOLO+KF 36.5 ± 5.1 17.6 ± 0.5 0.0 ± 0.0 241.7 ± 21.4 90.1 ± 18.1 234.3 ± 15.9 71.3 ± 2.1 82.7 ± 0.5 22.0 ± 1.0
​ CTracker 62.4 ± 3.2 7.0 ± 1.1 0.0 ± 0.0 20.0 ± 6.1 956.0 ± 15.1 67.0 ± 6.2 63.4 ± 1.1 66.5 ± 0.1 20.0 ± 0.2
​ FairMOT 77.3 ± 2.5 4.0 ± 2.2 0.0 ± 0.0 12.0 ± 8.4 654.0 ± 8.1 43.0 ± 8.3 75.3 ± 0.8 72.4 ± 0.1 57.0 ± 0.3
​ ByteTrack 83.6 ± 1.6 8.0 ± 1.1 0.0 ± 0.0 11.0 ± 9.1 154.0 ± 7.5 54.0 ± 3.1 86.4 ± 1.3 87±0.6 22.0 ± 2.0
​ Ours 93.0 ± 1.2 18.9 ± 0.3 0.0 ± 0.0 31.7 ± 3.1 48.0 ± 6.1 55.7 ± 2.6 93.2 ± 0.3 79.9 ± 0.2 50.0 ± 4.0
Medium GMM+KF 0.8 ± 0.4 2.0 ± 0.0 50.1 ± 0.3 1472.6 ± 114.1 6417.5 ± 21.8 10.6 ± 6.1 − 23.8 62.8 ± 0.8 5.0 ± 0.0
​ YOLO+KF 29.5 ± 3.3 35.7 ± 2.3 4.8 ± 0.6 641.5 ± 78.1 696.5 ± 88.0 1043.5 ± 76.8 61.3 ± 2.7 75.2 ± 0.7 38.0 ± 2.0
​ CTracker 50.2 ± 2.6 12.0 ± 0.2 6.0 ± 0.1 96.0 ± 5.8 1365.0 ± 9.4 121.0 ± 5.1 54.2 ± 1.2 56.2 ± 1.3 54±1.1
​ FairMOT 67.6 ± 2.1 11.0 ± 0.3 23.0 ± 1.1 65.0 ± 6.1 1251.0 ± 5.3 76.0 ± 6.4 59.3 ± 1.1 57.2 ± 1.3 159±6.1
​ ByteTrack 70.6 ± 3.2 11.0 ± 0.8 5.0 ± 0.8 201.0 ± 5.7 763.0 ± 3.8 102.0 ± 5.7 77.4 ± 1.8 76.1 ± 1.2 147±8.2
​ Ours 80.7 ± 1.8 41.2 ± 1.4 1.2 ± 0.9 351.3 ± 20.1 421.5 ± 23.5 120.2 ± 4.9 86.2 ± 0.6 75.9 ± 0.3 78.0 ± 7.0
Difficult GMM+KF 2.0 ± 0.3 0.0 ± 0.0 68.6 ± 2.0 1050.2 ± 63.9 3706.7 ± 13.8 14.7 ± 3.7 − 28 61.3 ± 0.4 3.0 ± 0.0
​ YOLO+KF 25.1 ± 2.2 62.6 ± 1.6 0.0 ± 0.0 665.8 ± 45.1 393.1 ± 38.5 985.5 ± 34.2 45.8 ± 2.4 78.6 ± 0.8 28.0 ± 2.0
​ CTracker 48.2 ± 4.1 16.0 ± 0.4 12.0 ± 0.2 113 ± 5.1 2910.0 ± 12.2 249.0 ± 6.7 51.1 ± 2.2 49.9 ± 2.1 26.0 ± 5.1
​ FairMOT 64.2 ± 2.1 13.0 ± 1.5 30.0 ± 1.2 103.0 ± 6.1 2313.0 ± 16.1 104.0 ± 9.4 52.4 ± 2.1 60.2 ± 1.9 87.0 ± 3.2
​ ByteTrack 64.5 ± 3.5 18.0 ± 2.1 11.0 ± 0.2 275.0 ± 12.5 1238.0 ± 23.7 209.0 ± 12.1 74.2 ± 1.8 74.2 ± 3.1 30.0 ± 5.2
​ Ours 71.0 ± 0.8 66.7 ± 1.1 0.0 ± 0.0 347.7 ± 42.5 335.2 ± 34.9 308.9 ± 6.5 73.7 ± 2.0 78.3 ± 0.3 60.0 ± 6.0
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line below represents the lower limit of the number of bees at that time, 
and the length of the box represents the distribution of the number of 
bees at that time. The overall activity of the bee colony and the foraging 
activity within a day tend to be more consistent, both starting to be 
active at 5:00 in the morning. The activity gradually increased, reaching 
a peak at 11:00 (the overall activity 3.3 ± 1.3, foraging activity 713.8 ±

435.4), and then the activity began to gradually decrease, and the ac
tivity of the colony basically dropped to 0 after 18 o’clock in the eve
ning. It should be noted that the overall activity at night is not 0, which 
is caused by the false detection of the background by the algorithm. 
During the experiment, the local sunrise time in Fuzhou was in the range 
of 5:57 to 6:26, and the sunset time was in the range of 18:04 to 18:18. 
Therefore, we divided the time between 5:00 in the morning and 6:00 p. 
m in the evening into the daytime, and the rest nighttime. We conducted 
t-test on the activity of day and night, and the statistical results showed 
that the bee colony had a strong circadian rhythm (n = 696, foraging 
activity: t < 0.05 (t = 2.27e-57), the overall activity: t = 2.05e-49), that 
is, bees work during the day and rest at night. Additionally, we found 
that on different days, whether it is the overall activity or the foraging 
activity, the difference at the same time is relatively large, which may be 
caused by the change of the environmental state around the beehive, We 
also got similar conclusions in Fig S6. And previous studies have 
concluded that bee activity is usually affected by weather conditions 
[45,46].

3.5.2. Activity of bees in different weather
The influence of different weather on the activity of bees in a month, 

The abscissa represents the date, the left side of the ordinate, and the 
blue line represent the overall activity of bees. We accumulate the 
average number of bees per hour in the current scene. The right side of 
the ordinate and the green line indicate the foraging activity, and the 
bees entering the hive every hour are accumulated. On the top of the 
abscissa, we use boxes of different colors to represent different types of 
weather. Through our observation, there are 6 kinds of weather changes 
this month. The colors from light to dark respectively represent sunny, 
cloud, overcast sky, light rain, moderate rain, and heavy rain.

Therefore, we need to explore the relationship between environ
mental changes and bee colony activity. We first used the local weather 
forecast in Fuzhou to analyze the influence of weather conditions on the 
activity of bee colonies. During the experiment, the local weather con
ditions include sunny, cloudy, overcast, light rain, moderate rain, and 
heavy rain (It should be noted that these conditions refer to the Chinese 
national standard GB/T35224–2017). For the overall activity of the bee 
colony, we take the hourly average, and the foraging activity takes the 
cumulative value of the day, as shown in Fig. 10, The abscissa represents 
the date, the left side of the ordinate, and the blue line represent the 
overall activity of bees. We accumulate the average number of bees per 
hour in the current scene. The right side of the ordinate and the green 
line indicate the foraging activity, and the bees entering the hive every 
hour are accumulated. On the top of the abscissa, we use boxes of 
different colors to represent different types of weather. Through our 
observation, there are 6 kinds of weather changes this month. The colors 
from light to dark respectively represent sunny, cloud, overcast sky, 
light rain, moderate rain, and heavy rain.

According to Fig. 10, the overall activity and foraging activity of bee 
colonies on rainy days are significantly lower than those in other 
weather conditions, such as rain on March 7, the overall activity and 
foraging activity of bee colonies were the lowest in a month, at 2 and 
2097, respectively. On March 13, it was sunny, and the overall activity 
and foraging activity of the colony was the highest, at 3 and 15,580, 
respectively, similar conclusions were obtained in Fig S7. And a similar 

Table 3 
Combining different scenarios to compare the performance of other algorithms.

Methods IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ MOTA↑ MOTP↑ Time(ms)

GMM+KF 1.9 ± 0.2 3.0 ± 0.0 132.0 ± 2.5 3093.2 ± 181.5 12,016.1 ± 39.3 34.9 ± 10.1 − 25.4 59.8 ± 0.7 3.0 ± 0.0
YOLO+KF 29.3 ± 1.9 115.9 ± 3.1 4.8 ± 0.6 1549.0 ± 71.1 1179.7 ± 103.0 2263.3 ± 75.5 59.1 ± 1.5 77.5 ± 0.5 30.0 ± 2.0
CTracker 52.4 ± 1.8 35.0 ± 6.0 18.0 ± 2.0 229.0 ± 92.0 5231.0 ± 257.0 437.0 ± 16.0 55.1 ± 2.1 56.2 ± 1.5 33.0 ± 0.4
FairMOT 68.4 ± 1.5 28.0 ± 3.0 53.0 ± 2.0 180.0 ± 32.0 4218.0 ± 32.0 223.0 ± 14.0 61.2 ± 1.7 62.1 ± 1.6 101.0 ± 0.7
ByteTrack 71.5 ± 1.6 37.0 ± 1.0 16.0 ± 3.0 487.0 ± 42.0 2155.0 ± 31.0 365.0 ± 8.0 78.1 ± 0.7 78.5 ± 1.3 66.0 ± 0.8
Ours 79.7 ± 1.0 126.8 ± 1.4 1.2 ± 0.9 730.7 ± 51.8 804.7 ± 40.0 484.8 ± 9.7 83.5 ± 0.7 77.3 ± 0.2 63.0 ± 4.0

Fig. 8. Visualize the algorithm results.
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phenomenon was found by Lawson and Rands et, al. [47].

3.5.3. Activity of bees at different temperatures
The above analysis begs the question of what factors account for 

differences in colony activity on days when it is not raining. To answer 
this question, we need to analyze the temporal relationship between the 
three environmental factors of temperature, humidity, and sound and 
the activity of the bee colony. as shown in Fig. 11, the right side of the 
longitudinal coordinates represents temperature, and we take the mean 
temperature per minute, with green, red, light blue, and purple curves 
representing the temperature of the hive center, margin, door, and 
environment, respectively. (a) The blue curve represents the bee’s 
overall activity, taking the average of each hour, and (b) the blue curve 
represents the bee’s foraging activity, taking the cumulative value of 
each hour. It can be seen from the observation that: (1) The temperature 
fluctuation range at the center of the nest is small, and the daily tem
perature upper and lower limits and fluctuation trends are stable after 
March 9, ranging from 18.47 to 36.94 ◦C. This is since the beehive’s 
Internal hive temperature as a means of monitoring honey bee colony 
health in a migratory beekeeping operation before and during winter 
[38], and before March 9, due to The outside temperature is low, and the 

heating capacity of the bee colony in the beehive is limited [48], so the 
temperature fluctuation in the center of the comb is relatively large, 
between 13.47 and 36.67 ◦C; (2) The temperature change trends of the 
other three locations are the same. Among them, the external ambient 
temperature of the beehive is the lowest. We take the external temper
ature as the independent variable and use the temperature at the door of 
the nest and the temperature at the margin of the nest as the dependent 
variables for linear regression. As shown in Fig. 12(a), we get two linear 
relationship expressions: y = 1.07x+2.02 (R2=0.94) and y =

0.97x+3.32 (R2=0.93), that is, the base temperature of the nest door 
and edge temperature is 2.02 and 3.32 ◦C higher than the external 

Table 4 
Compare the counting accuracy of other algorithms. Use our counting algorithm to count the tracking results of other algorithms, and use RMSE for evaluation. The 
smaller the RMSE means the better the counting performance. In different scenarios, C, E and O are used as parameters to measure the activity of bees (C represents the 
current number of bees at the entrance of the nest, E represents the number of bees entry the beehive, and O represents the number of bees out the beehive), and the 
final summary is overall.

Methods 
Scene

GMM+KF YOLO-tiny+KF CTracker FairMOT ByteTrack Ours

Easy scene C 30.2 ± 0.8 2.5 ± 0.3 3.2 ± 0.1 1.2 ± 0.3 0.7 ± 0.2 0.1 ± 0.0
E 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
O 0.16±0.0 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0

Medium scene C 373.0 ± 19.3 37.5 ± 1.1 42.3 ± 0.5 20.1 ± 0.4 8.4 ± 0.6 1.0 ± 0.2
E 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
O 0.7 ± 0.1 0.9 ± 0.2 0.8 ± 0.1 0.7 ± 0.2 0.8 ± 0.1 0.8 ± 0.1

Difficult scene C 115.2 ± 6.8 8.8 ± 1.5 10.4 ± 0.8 6.3 ± 0.4 4.7 ± 0.1 1.6 ± 0.2
E 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.0 0.3 ± 0.0
O 0.5 ± 0.0 0.8 ± 0.2 0.6 ± 0.1 1.2 ± 0.1 2.5 ± 0.2 3.7 ± 0.2

Overall C 174.6 ± 8.8 6.3 ± 0.6 9.5 ± 1.0 5.2 ± 0.2 2.8 ± 0.4 1.3 ± 0.1
E 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
O 0.4 ± 0.0 0.6 ± 0.1 0.5 ± 0.0 0.9 ± 0.0 1.2 ± 0.2 1.6 ± 0.1

Fig. 9. The activity level of the bee colony at different times of the day.

Fig. 10. The influence of different weather on the activity of bees in a month.

Fig. 11. Effect of temperature change on hive activity in different parts of hive.
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temperature, and the external temperature per liter. When the temper
ature is 1 ◦C higher, the temperature at the entrance and edge of the nest 
increases by 1.07 and 0.97 ◦C, respectively, which also shows that the 
interior of the hive, as an almost closed space, can play a role in thermal 
insulation to a certain extent; (3) It is difficult to see the effect of tem
perature on colony activity at the center of the nest, while the temper
ature monitored at the other three locations on some days, the higher the 
daytime temperature, the higher the overall colony activity and foraging 
activity. But there are exceptions, such as March 10 and March 12 reflect 
the opposite conclusion, which may be due to other factors, namely that 
temperature can only partially reflect the active state of bee colonies 
[25], consistent with this conclusion in Fig S8(a) and Fig S8(b).

3.5.4. Activity of bees with different humidity
Abrol and others found that humidity has an effect on the active state 

of bee colonies and showed a certain negative correlation [49]. There
fore, we analyzed the effect of humidity changes at different positions of 
the beehive on the activity of the bee colony, in which the humidity of 

each position was taken as the average value of every minute, and the 
overall activity of the bee colony and the degree of foraging activity was 
taken as the average value of each hour, as shown in Fig. 13, the right 
side of the longitudinal coordinates represents humidity, and we take 
the mean temperature per minute, with green, red, light blue, and purple 
curves representing the humidity of the hive center, margin, door, and 
environment, respectively. (a) The blue curve represents the bee’s 
overall activity, taking the average of each hour, and (b) the blue curve 
represents the bee’s foraging activity, taking the cumulative value of 
each hour. It can be seen from observation: (1) The humidity at the 
center of the nest is the lowest and the fluctuation range is the smallest, 
and the daily change trend after March 9 is relatively regular, basically 
between 23 and 73 %, while the larger fluctuations on the previous days 
are because these days are cloudy and rainy (see Fig. 10), so the hu
midity is naturally higher; (2) The humidity changes in the other three 
locations are consistent, and the closer to the center of the nest during 
the day, the higher the humidity is, and the opposite is true at night. We 
take the external humidity as the independent variable and do linear 
regression with the humidity at the door of the nest and the humidity at 
the margin of the nest respectively. As shown in Fig. 12(b), we get two 
linear relationship expressions: y = 0.69x+25.45 (R2=0.82) and y =
0.52x+27.4 (R2=0.73), that is, the basic humidity of the nest door and 
edge humidity is 25.45 % and 27.4 % higher than the external humidity, 
and for every 1 % increase in the external humidity, the nest door and 
edge humidity are increased by 0.69 % and 0.52 %, respectively. It 
shows that the beehive structure has a certain influence on the humidity; 
(3) Before March 9, except for the center of the hive, the lower the 
daytime humidity monitored in the other three locations, the higher the 
overall activity of the colony and the feeding activity is higher, and after 
March 9, since the changes of humidity in each location are relatively 
stable on different days, it is difficult to judge their impact on the activity 
of the bee colony. Fig S8(c), Fig S8(d) also obtained corresponding 
conclusions.

Fig. 12. Linear regression between external temperature and humidity and the 
temperature and humidity at the door and margin of the nest.

Fig. 13. Effect of humidity change on hive activity in different parts of hive.

Y. Zheng et al.                                                                                                                                                                                                                                   Smart Agricultural Technology 9 (2024) 100584 

10 



3.5.5. Relationship between sound and bee activity
Next, we also analyzed the relationship between the sound changes 

at the center of the beehive and the bee colony activity, in which the 
maximum value per minute was taken for the sound, and the hourly 
average was taken for the overall bee colony activity and foraging ac
tivity, as shown in Fig. 14, the abscissa represents the date, the left side 
of the coordinate axis and the green curve represent the amplitude of the 
sound, the right side of the coordinate axis and the blue line in (a) 
represent the overall activity of bees, and the right side of the coordinate 
axis and the blue line in (b) represent the foraging activity of bees. 
Through observation, it can be seen that on most days, the sound at the 
center of the comb increases with the overall activity and foraging ac
tivity of the colony. When the colony is inactive, the sound at the center 
of the comb also increases lower, but there are still some days, such as 
March 10, when the sound is higher during the day, but the overall 
activity of the bee colony is lower. We took the sound amplitude as the 
independent variable and the activity as the dependent variable and 
established a linear regression model for fitting, and the relationship was 
obtained as y = 0.0044x+1.58 (R2=0.05), This regression equation also 
verifies our observation, but the linear relationship between them is 
weak due to other environmental factors. We also found a similar 
conclusion in Fig S9. In previous work, Kulyukin et al. also found a 
certain relationship between acoustic signals and colony activity [50].

Through the above analysis of the impact of different environmental 
factors and bee colony activity, we found that changes in temperature, 
humidity, and sound will have a certain impact on bee colony activity, 
but each factor can only reflect colony activity in some cases, which 
means that the bee colony activity should be affected by a variety of 
environmental factors. Nha Ngo et al. used the ANOVA method and 
found that different environmental variables have a certain impact on 
honey bee activity [25].

3.5.6. Analysis of multiple factors and bee activity
Therefore, we need to analyze these environmental factors together 

to further reveal the relationship between the environment and bee 
colony activity. In addition, considering that the colony has a circadian 
rhythm, that is, no matter how the nighttime environment changes, it 
does not affect the activity of the colony, so we should only keep the 
period when the colony is active during the day. According to the local 
sunrise and sunset times in Fuzhou during the experiment provided 
above, we will only analyze the data from 6:00am to 6:00pm. We select 
two factors to analyze the relationship between the temperature, hu
midity, and sound and the activity of bees in three environments. Take 
the graph in the upper left corner of Fig. 15(a) as an example, and the 
abscissa is T_Center (cur), indicating the temperature in the center of the 
hive, cur in brackets indicates that the current analysis is the overall 
activity of bees, and the ordinate H_Center(cur) indicates the humidity 
in the center of the hive. Each point in the figure indicates the activity of 
bees. Dark blue is the lowest and red is the highest. Please refer to the 
color chart on the right. These figures show the center, edge, doorway, 
and environment of the hive from left to right. H represents humidity, T 
represents temperature, and sound represents the sound amplitude 
Fig. 15(a) Analyze the relationship between the three environmental 
factors and the overall activity of bees, Fig. 15(b) analyze the relation
ship between the three environmental factors and the foraging activity 
of bees. After observation, we found the following findings: (1) Under 
the premise that the sound amplitude at the center of the comb is be
tween 500 dB and 2000 dB, the temperature and humidity of different 
positions of the beehive have a range, which makes the overall activity 
of the bee colony and the Foraging activity is relatively high. Abou- 
Shaara and others [51] also believed that the bee colony could main
tain a high activity level under a wide range of environmental condi
tions; (2) Outside the hive, the temperature was 19 ◦C~40 ◦C and the 
humidity was 27 %~63 %, as the temperature increases and the hu
midity decreases, the overall activity and foraging activity of the bee 
colony will increase; (3) Similarly, at the door of the beehive, the suit
able temperature is 20 ◦C~37 ◦C, the humidity is 40 %~73 %; at the 
edge of the comb inside the beehive, the suitable temperature is 20 
◦C~37 ◦C, and the humidity is 47 %~80 %; in the center of the beehive, 
the suitable temperature is 25 ◦C~37 ◦C, humidity is 48 %~67 %; (4) 
Additionally, we found that the closer to the center of the comb, the 
suitable temperature, and humidity range are constantly increasing, 
which is consistent with the above analysis on the conclusion that hu
midity affects the temperature and humidity of different positions. We 
found similar conclusions in Fig S10.

4. Conclusion

In this paper, we construct the BEE22 dataset, which can realistically 
reflect the scene of bees entering and leaving the hive. At the same time, 
based on this dataset, compared with existing methods, the proposed 
multi bee tracking algorithm can effectively solve the problems of 
mutual occlusion and ID switching among bees. Specifically, we ach
ieved 83.5 % ± 0.7 % MOTA, 77.3 % ± 0.2 % MOTP, and 79.7 % ± 1.0 
% IDF1, this performance evaluation demonstrates that our method 
exhibit high performance and yield acceptable results for multi-object 
tracking tasks. Furthermore, using our bee counting algorithm to 
count the tracking results of each model, the RMSE for current, entry, 
and out scene reached 1.3 ± 0.1, 0.2 ± 0.0, and 1.6 ± 0.1, respectively. 
From the result it can be seen that almost all the indicators of our al
gorithm are optimal in different scenarios. Afterwards, through moni
toring the real environment of bees, it was found that their attendance 
decreased during heavy rainfall weather. the activity of the bee colony 
will also increase accordingly, when the amplitude is 500 dB to 2000 dB, 
the temperature of the center of the beehive is 25 ◦C to 37 ◦C, and the 
humidity is 48 % to 67 %. Ultimately, our system provides a reliable tool 
for researchers while making it easier for beekeepers to manage their 
hives.

Fig. 14. Effects of sound changes at the center of a beehive on the activity of 
bee colonies.
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